Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические методы анализ косвенные

    В методах косвенной кулонометрии определяемое вещество не участвует в реакции, протекающей непосредственно на электроде. В результате электрохимической реакции, проходящей на электроде, генерируется промежуточный реагент, который взаимодействует с определяемым веществом в объеме раствора. Косвенная кулонометрия применяется значительно чаще, чем прямая, как способ введения в раствор некоторого количества электричества, необходимого для осуществления титрования. В методах анализа, не связанных с титрованием, этот способ используют редко, поскольку анализируемый раствор должен содержать подходящий промежуточный реагент. Единственным недостатком косвенной кулонометрии по сравнению с прямой является необходимость количественного протекания реакций на обоих этапах косвенного кулонометрического анализа. Образование промежуточного реагента должно происходить с выходом, равным 100% по фарадеевскому току, а реакция генерированного титранта с определяемым веществом должна быть и быстрой, и количественной. Косвенная кулонометрия характеризуется также большей скоростью, поскольку концентрация веще- [c.737]


    В то время практически отсутствовали инструментальные методы анализа, которые дают нам прямые доказательства. О каждом изменении в направлении реакции судили по косвенным признакам. Чтобы проверить, например, участие тех или иных химических реакций в электрохимическом механизме, самое надежное было — повторить эти реакции изолированно. Поэтому едва ли не главная роль при изучении механизма электрохимических реакций отводилась чистым химикам. [c.25]

    Информация по косвенной кулонометрии до 1966 г. обобщена в монографиях [294, 295], обзорах по кулонометрии и электрохимическим методам анализа [298]. Из данных, приведенных в таблицах, видно, что за этот период заметно расширился круг задач, решаемых методами косвенной кулонометрии, увеличилось число соединений различных элементов, определяемых данным методом. Опубликовано большое число статей, посвященных применению этого метода для анализа самых разнообразных объектов, полупроводниковых материалов, реактивов, природных и сточных вод, сталей, первичных и стандартных образцов. Применение неводных и смешанных растворителей, не устойчивых в обычных условиях титрантов, титрантов, генерируемых из амальгамы и электродов второго рода, металлоактивных электродов и пр. значительно расширило возможности кулонометрического метода титрования. [c.68]

    КУЛОНОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на измерении кол-ва электричества Q, прошедшего через. электролизер при электрохим. окислении или восстановлении в-ва. Согласно Фарадея закону, Q связано с кoл-вo f электрохимически превращаемого в-ва Р ур-нием Р = 0 /96500, где А — электрохим. эквивалент этого в-ва. Различают прямую К., когда в электродной р-ции участвует только определяемое в-во, к-рое электрохимически активно до конца электролиза, и косвенную К., или кулонометрич. титрование (К. т.), при к-рой, независимо от электрохим. активности определяемого в-ва, в электролизер вводят электрохимически активный вспомогат. реактив, продукт превращения к-рого (кулонометрич. титрант) химически взаимодействует с определяемым в-вом. При определении к-т и оснований вспомогат. реактив не вводят, т. к. соответствующие титранты (ОН иН + ) образуются при электролизе воды в присут. инертных электролитов, обеспечивающих электрич. проводимость р-ра. [c.292]

    Среди косвенных методов введения атомов фтора в ароматическое кольцо центральное место занимает метод Бальца-Шимана [1-11]. Эта реакция, идущая через тетрафторбораты арил- и гетарилдиазония, освоена промышленностью и постоянно используется в синтетических исследованиях. В заключительной части главы 3 мы также рассматриваем еще один метод введения атомов фтора в ароматические соединения - электрохимическое фторирование. Обоим этим методам уделено большое место в обзорной литературе, и потому в рамках книги невозможно, да и нецелесообразно, дать исчерпывающий обзор. Мы ограничили себя анализом развития способа Бальца-Шимана и электрохимического метода главным образом за последние десятилетия. При этом, в соответствии с основной задачей книги, мы рассматриваем работы, направленные на введение малого числа атомов фтора в ароматические соединения. [c.41]


    К электрохимическим методам детектирования в КЭ относят амперометрический (прямое и косвенное определение), кондуктометрический и потенциометрический. Амперометрическое детектирование для КЭ впервые было предложено в 1987 г. для анализа катехоламинов [140] и может быть использовано для обнаружения электрохимически активных веществ. В основе метода лежит измерение тока, протекающего в электрохимической ячейке при происходящих на рабочем электроде реакциях окисления или восстановления величина тока прямо пропорциональна концентрации анализируемого соединения. Обычно в электрохимической ячейке находятся три электрода рабочий (из стеклоуглерода, угольной пасты или амальгамированного золота), вспомогательный и электрод сравнения типичные потенциалы детектирования 0,4-1,2 В. Подавляющее большинство амперометрических исследований в КЭ проводят по окислению (анализ ароматических гидро-ксисоединений, ароматических аминов, индолов, меркаптанов и т.д.) [58]. Детектирование по восстановлению практически не используют из-за мешающего влияния растворенного кислорода. Недостаток амперометрического детектирования — отравление рабочего электрода ввиду сильной сорбции промежуточных продуктов окислительно-восстановительных реакций поверхностью электрода, следствием является снижение его активности [44]. Замена угольного электрода медным позволяет увеличить срок службы рабочего электрода в неимпульсной схеме амперометрического детектирования [49]. [c.353]

    Различают прямой (первичный) кулонометрический метод анализа и косвенный (вторичный). Последний более известен как кулонометрическое титрование . Каждый из этих методов имеет свои ограничения, преимущества, недостатки. Однако для всех кулонометрических методов обязательны следующие условия электропревращение анализируемого вещества должно протекать практически со 100%-ной э. т. г. наличие надежного способа определения момента завершения процесса электрохимической или химической (в косвенной кулонометрии) реакций точное определение количества электричества (Р), прошедшего через ячейку до момента завершения контролируемой реакции [1-3]. [c.8]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    Ввиду сравнительно слабой электрохимической активности фтор-иона, почти нет прямых методов его определения. В основном описаны косвенные методы, основанные на влиянии фтор-иона на поведение других электрохимических активных ионов, например Fe +, Со . При введении фтор-иона в растворы указанных ионов наблюдается резкое уменьшение окислительно-восстановительного потенциала, что и легло в основу большинства методов [1—4]. Много работ посвящено методам с применением ферро — ферри-электрода в качестве индикатора [5,6]. Данный метод применен к анализу воды [7] считают, что, применяя микроаппаратуру, можно определить 0,05—1 мг фтор- [c.130]


    Прямой анализ основан на корреляции между интенсивностью ЭХЛ и концентрацией определяемого люминесци-рующего соединения. В широком диапазоне концентраций эта корреляция носит линейный характер. Но поскольку люминесцирует ограниченное количество веществ, то представляет интерес метод косвенного ЭХЛ определения концентраций электрохимически активных и неактивных веществ, например примесей неорганических и органических кислот по зависимости интенсивности и токов электрохимической реакции екоторых полиаценов (рубрена, атрацена), вторичных аминов и т. д. [c.147]

    В жидкостной хроматографии для количественного определения соединений в потоке жидкой подвижной фазы чаще всего применяют устройства, работа которых строится на принципах измерения светопоглощения, относящегося к заданным длинам волн (УФ-детектор), или светопреломления (рефрактометр), а также гораздо более селективные детекторы по флуоресценции и электрохимический. Табулирование относительных откликов 8ТИХ детекторов не представляется возможным из-за большого влияния, оказываемого как на абсолютный, так и на относительный сигнал детектора, природы и состава растворителей, образующих подвижную фазу. Лаже незначительные отклонения в качественном и количественном составе подвижной фазы могут, например, изменить коэффициент экстинкции фото-метрируемого соединения на несколько порядков его численной величины. Вследствие этого обстоятельства из трех основных методов количественного хроматографического анализа, предусматривающих градуировку прибора в прямой форме (метод абсолютной градуировки), либо в косвенной (методы внутренней нормализации, внутреннего стандарта и их модификации), в жидкостной хроматографии преимущественно используют метод абсолютной градуировки и реже два других метода [325]. Суть каждого из них будет рассмотрена ниже. [c.348]


Смотреть страницы где упоминается термин Электрохимические методы анализ косвенные: [c.547]    [c.7]    [c.69]   
Методы анализа чистых химических реактивов (1984) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Методы анализа косвенные

Методы анализа электрохимические

Методы электрохимические



© 2025 chem21.info Реклама на сайте