Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулонометрия косвенная

    В методах косвенной кулонометрии определяемое вещество не участвует в реакции, протекающей непосредственно на электроде. В результате электрохимической реакции, проходящей на электроде, генерируется промежуточный реагент, который взаимодействует с определяемым веществом в объеме раствора. Косвенная кулонометрия применяется значительно чаще, чем прямая, как способ введения в раствор некоторого количества электричества, необходимого для осуществления титрования. В методах анализа, не связанных с титрованием, этот способ используют редко, поскольку анализируемый раствор должен содержать подходящий промежуточный реагент. Единственным недостатком косвенной кулонометрии по сравнению с прямой является необходимость количественного протекания реакций на обоих этапах косвенного кулонометрического анализа. Образование промежуточного реагента должно происходить с выходом, равным 100% по фарадеевскому току, а реакция генерированного титранта с определяемым веществом должна быть и быстрой, и количественной. Косвенная кулонометрия характеризуется также большей скоростью, поскольку концентрация веще- [c.737]


    В зависимости от происходящих в растворе электрохимических процессов различают прямую кулонометрию и косвенную (кулонометрическое титрование). [c.162]

    Работы, выполняемые методом косвенной кулонометрии, или кулонометрического титрования, при постоянной силе тока электролиза [c.219]

    Наиболее важной и фактически единственной областью применения косвенной кулонометрии в аналитической химии является кулонометрическое титрование.  [c.738]

    Среди методов кулонометрии различают пряные и косвенные. Последние известны как методы кулонометрического титрования. Для всех методов кулонометрии обязательным является условие, при котором превращение вещества на электроде должно протекать со 100%-ной эффективностью, т.е. со 100%-ным выходом по току. Иначе говоря, внешнее напряжение должно обеспечивать электролиз определяемого вещества и в то же время быть недостаточным для возникновения побочных электрохимических реакций. Это условие означает строгое выполнение пропорциональной зависимости между количеством прошедшего через ячейку электричества и суммарным количеством продукта электролиза. [c.517]

    Прямая кулонометрия с контролируемым потенциалом Косвенная кулонометрия (кулонометрическое титрование) [c.8]

    Косвенная кулонометрия. или кулонометрическое титрование, заключается в том, что определяемые компоненты X или У, не способные подвергаться электрохимической реакции на электродах, вступают в химическое взаимодействие со вспомогательными реагентами К или i , легко окисляющимися или восстанавливающимися на электродах в данных условиях в соответствии со следующими схематическими реакциями  [c.307]

    В течение длительного времени было принято использовать свойства вольтамперометрических кривых ток — потенциал или ток — время для обнаружения и изучения кинетических усложнений, сопровождающих определенные электролитические процессы, происходящие на микроэлектродах. Иногда эти исследования затруднялись ввиду того, что за допустимое для электролиза время могли скопиться только очень малые количества продуктов реакции. Поэтому для того, чтобы характеризовать возможные вторичные реакции и идентифицировать промежуточные и окончательные продукты реакции во многих случаях приходилось полагаться, главным образом, на косвенные данные. Применение же потенциостатической кулонометрии может обеспечить полумикро- или макромасштабный электролиз, сохраняя при этом специфичность первичного электролитического процесса. [c.17]

    Если в прямой кулонометрии электрохимическому превращению подвергается определяемое вещество, то в методах косвенной кулонометрии определение количества вещества складывается из электрохимической и химической реакций. Определяемое вещество не участвует в реакции, протекающей на электроде. В ходе электролиза генерируется титрант, который вступает в химическую реакцию с определяемым компонентом в объеме раствора кулонометрическое титрование с внутренней генерацией). Поэтому в косвенной кулонометрии необходимо иметь способ обнаружения момента завершения химической реакции генерированного на электроде титранта с определяемым веществом. Для установления конечной точки титрования применяют потенциометрический, амперометрический, фотометрический или другие методы. [c.517]


    Электролиз при контролируемом потенциале называют также прямой потенциостатической кулонометрией. Прямой электролиз при контролируемой силе тока — прямой амперостатической кулонометрией, косвенный электролиз при контролируемой силе тока — кулонометрическим титрованием (косвенная амперостатическая кулонометрия). [c.252]

    РАБОТЫ, ВЫПОЛНЯЕМЫЕ МЕТОДОМ КОСВЕННОЙ КУЛОНОМЕТРИИ 219 [c.219]

    Процесс определения методом косвенной кулонометрии складывается из электрохимической и химической реакций, тогда как для определения методом прямой кулонометрии используют только электрохимическую реакцию. [c.121]

    КУЛОНОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на измерении кол-ва электричества Q, прошедшего через. электролизер при электрохим. окислении или восстановлении в-ва. Согласно Фарадея закону, Q связано с кoл-вo f электрохимически превращаемого в-ва Р ур-нием Р = 0 /96500, где А — электрохим. эквивалент этого в-ва. Различают прямую К., когда в электродной р-ции участвует только определяемое в-во, к-рое электрохимически активно до конца электролиза, и косвенную К., или кулонометрич. титрование (К. т.), при к-рой, независимо от электрохим. активности определяемого в-ва, в электролизер вводят электрохимически активный вспомогат. реактив, продукт превращения к-рого (кулонометрич. титрант) химически взаимодействует с определяемым в-вом. При определении к-т и оснований вспомогат. реактив не вводят, т. к. соответствующие титранты (ОН иН + ) образуются при электролизе воды в присут. инертных электролитов, обеспечивающих электрич. проводимость р-ра. [c.292]

    Кулонометрические титранты в косвенной кулонометрии могут быть получены и вне анализируемого раствора кулонометрическое титрование с внешней генерацией). В этом случае электролизу подвергают отдельный (внешний) раствор и добавляют его в раствор определяемого вещества. Реакция между ним и генерированным титрантом происходит при смешении анализируемого раствора с раствором титранта. [c.517]

    Следует заметить, что при контролируемом потенциале возможна и косвенная кулонометрия. В этом случае на электроде подвергается превращению введенное в избытке вспомогательное вещество, из которого генерируется титрант. Последний количественно реагирует с определяемым компонентом, который может быть электрохимически неактивным при данном потенциале. Например, если вспомогательное соединение А восстанавливается на электроде с образованием титранта В, который далее вступает в реакцию с определяемым компонентом X, т.е. [c.522]

    В косвенной кулонометрии определяемое вещество, как правило, не принимает участия в электрохимической реакции. Электролиз при постоянной силе тока используют для электрохимической генерации титранта или из вспомогательного реагента, или из материала рабочего электрода . Титрант быстро и количественно реагирует с определяемым веществом. Необходимо убедиться в достижении конечной точки титрования. Наиболее часто используемыми и чувствительными методами для определения конечной точки кулонометрического титрования являются потенциометрия и амперометрия. Кулонометрическое титрование можно автоматизировать. [c.437]

    Известен ряд работ по использованию кулонометрии при контролируемом потенциале в косвенных методах определения некоторых веществ (например, цианамида [225]), а также в сочетании с другими физико-химическими методами, в частности, с хроматографией [226, 227] и полярографией [207]. Этот вариант кулонометрии применяется также и для решения других практических задач [219, 228—231 ], которые не могут быть рассмотрены в настоящем обзоре. [c.27]

    Кулонометрический анализ проводят в специальных ячейках, состоящих из нескольких камер, разделенных пористыми стеклянными или керамическими перегородками. В комплект ячейки входят рабочий, вспомогательный и индикаторный электроды. По технике выполнения различают гальваностатическую кулонометрию (при постоянной силе тока) и потенциостатическую кулонометрию ( при постоянном потенциале рабочего электрода). В зависимости от происходящих в растворе электрохимических процессов различают прямую и косвенную кулонометрию. [c.305]

    В зависимости от происходящих в pa tBope электрохимических процессов различают прямую первичную) кулонометрию и косвенную (вторичную) кулонометрию, или кулонометрическое титрование. [c.191]

    Все приведенные примеры показывают, что при электролизе, независимо от того, электропревращается илн непосредственно определяемое вещество или вспомогательный реагент, на каждый заряд одного иона расходуется один электрон. Таким образом, в кулонометрии реагентом— своего рода титрантом — фактически является электрон, а в косвенной кулонометрии, кроме того, происходит. химическая реакция. [c.200]

    В отличие ОТ других титриметрических методов в косвенной кулонометрии титрант готовится электрохимически непосредственно действием электронов, причем электрогенерацию титранта можно осуществить в испытуемом растворе за счет внесенного в него подходящего реактива. Такой способ называется кулонометрическим титрованием с внутренней генерацией. [c.201]

    Кулонометрические методы могут быть прямыми — когда определяемое вещество электролитически осаждается на электроде (снимается с него) или же окисляется (восстанавливается) непосредственно па электроде и затем удаляется с него в массу анализируемого раствора. Они могут быть косвенными — когда на рабочем электроде генерируется какой-либо промежуточный компонент, количественно реагирующий с определяемым веществом. В первом из указанных вариантов обычно контролируют потенциал рабочего (генераторного) электрода, во втором — силу тока, проходящего через электролитическую ячейку. По этой причине методы кулонометрического анализа разделяют на две большие группы — кулонометрию при контролируемом потенциале и куло-нометрию при постоянной силе тока (кулонометрические титрования). Оба варианта, имеющие одну и ту же принципиальную основу, различаются по аппаратурному оформлению, технике определений и в некоторых случаях но достигаемой точности. В обзоре (главы II—IV) результатов работ по кулонометрическому методу анализа, опубликованных в зарубежной и отечественной литературе, все описанные методы группируются по указанным выше признакам. [c.4]


    Например, при электрогенерации на катоде Ре- + из Ре+++, если бы анод находился в одной камере с катодом, то часть Ре++, переместившись к аноду, окислялась бы до Ре+++ не успевая взаимодействовать с определяемым окислителем в растворе (при косвенной кулонометрии) или, возвращаясь к катоду, повторно приняла бы участие в катодном процессе (при прямой кулонометрии). Поэтому изоляция анодной и катодной камер друг от друга — совершенно необходимое условие, особенно при кислотно-основном титровании с генерированными Н+- и ОН -ионами вследствие их большой подвижности и малого размера. [c.203]

    По технике выполнения кулонометрический метод анализа делится на потенциостатическую кулонометрию, гальваностатическую кулономет-рию и кулонометрическое титрование. Первые два метода относятся к прямым методам анализа, а последний - к косвенным методам. [c.121]

    В методе косвенной кулонометрии (кулонометрического титрования) определяемое вещество не принимает участие в электрохимической реакции, протекающей непосредственно на электроде. В ходе реакции на электроде генерируется промежуточный реагент (титрант), стехиометрически реагирующий с определяемым веществом. Реакции промежуточного реагента с определяемым веществом обычно относятся к типу редокс-реакций, однако это могут быть и кислотно-основные взаимодействия. [c.524]

    В косвенной кулонометрии электрогенерация титранта может быть осуществлена непосредственно в анализируемом растворе (кулонометрическое титрование с внутренней генерацией) и вне его (кулонометрическое титрование с внешней генерацией). [c.122]

    В методе косвенной потенциостатической кулонометрии, то есть в кулонометрическом титровании при Е , = onst, можно воспользоваться значением потенциала рабочего электрода, соответствующим предельному [c.127]

    В методе косвенной гальваностатической кулонометрии электролиз проводят при постоянном значении силы тока, так же как и в методе прямой гальваностатической кулонометрии. Отличие заключается в том, что электролиз проводят при большой концентрации электроактивного вспомогательного реагента, то есть вспомогательный реагент выполняет роль электрохимического буфера, препятствуя сдвигу потенциала рабочего электрода в процессе электролиза. Поскольку концентрация вспомогательного реагента остается практически неизменной, выход по току титранта при правильно выбранньк условиях остается все время постоянным и близким к 100 %. [c.130]

    Миллс и сотр. [52] сконструировали электрохимическую ячейку, изолированную от воды и кислорода, для использования в полярографии, циклической вольтамперометрии и кулонометрии. Они описали метод определения от 10 ммоль до 10 мкмоль воды и кислорода в растворителях высокой чистоты. Например, малые количества воды влияют на вольтамперометрическое восстановление 2-метокси-3,8-диметилазоцина на капельном ртутном электроде. Эти исследователи [52] отмечают, что влага заметно влияет на восстановление азоцина до дианиона даже в очищенном диметил-формамиде, содержащем всего 10" моль воды. Пелег [57а] описывает определение воды в плавленых нитридах щелочных металлов вольтамперометрическим методом, который он затем использовал для измерения растворимости воды в нитратах лития, натрия и калия. Серова и сотр. [67а] применили реакцию с нитридом магния [уравнение (2.44)] для косвенного полярографического определения малых количеств воды в газах. Аммиак, образующийся в реакции с водой, поглощался в ловушке 0,01 н. раствором НС1 и анализировался полярографически в интервале от —0,7 [c.66]

    Содержание определяемого вещества в кулонометрии рассчитывают по величине Q, которая соответствует либо электропревращению определяемого компонента (если он элекроактивен), либо электрогенерации титранта. Последний в необходимом количестве получают на генераторном электроде из воды, растворов солей, кислот, вспомогательных реагентов, твердых электроактивных (рабочих) электродов или амальгам металлов при контролируемом токе косвенная гальваностатическая кулонометрия), либо при контролируемом потенциале косвенная потенциоста-тическая кулонометрия). Преимуществом последнего метода является селективность электродной реакции и возможность последовательной электрогенерации нескольких титрантов при соответствующих значениях потенциала. [c.518]

    Почему возможности метода прямой кулонометрии оп)аничены по сравнению с возможностями косвенной кулонометрии  [c.196]

    Методы кулонометрии. Методы аналитической ку-лонометрии могут -быть основаны почти на любом типе химических реакций, включая растворение, электроосаждение, окисление и восстановление одних растворимых веществ в другие. Некоторые из этих методов можно назвать прямыми (в этом случае в электродной реакции участвует само определяемое вещество, например при электроосаждении металлов), а некоторые—косвенными (когда в электродной реакции происходит потребление или освобождение другого вещества, связанного количественным соотношением с исследуемым веществом). [c.192]


Смотреть страницы где упоминается термин Кулонометрия косвенная: [c.5]    [c.191]    [c.192]    [c.221]    [c.517]    [c.121]    [c.122]    [c.522]    [c.524]    [c.737]    [c.56]    [c.175]   
Аналитическая химия Том 2 (2004) -- [ c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическое применение косвенной кулонометрии

Аппаратура, ячейки и лектроды, используемые в прямой кулонометКосвенная кулонометрия, условия и техника выполнения анализа методом косвенной кулонометрии

Аппаратура, ячейки и электроды, используемые в косвенной кулонометрии

Косвенная кулонометрия с контролируемый током

Косвенная кулонометрия с контролируемым потенциалом

Кулонометрия

Кулонометры



© 2025 chem21.info Реклама на сайте