Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения анализ

    Для исследований состава и строения углеводородов определяются их спектры поглощения в ультрафиолетовой и инфракрасной областях. Наибольшее значение ультрафиолетовая спектроскопия имеет для анализов ароматических соединений. Таким путем можно определять бензол, толуол, парафины, нафтены и олефины. Ксилол [c.228]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]


    Предельные углеводороды. Возможность количественного структурногруппового анализа по спектрам поглощения в ближней инфракрасной области впервые была показана Розе в 1938 г. Интенсивности полос обертонов валентных колебаний связи углерод — водород были измерены для ряда к-парафинов, разветвленных парафинов, нафтенов и ароматических соединений. Ввиду того, что ни одна из этих полос не разрешается пол- [c.330]

    Как и следует ожидать из данных ультрафиолетовой поглотительной спектроскопии (см. выше), парафины и нафтены в основном лишь слабо флуоресцируют. Ароматические соединения, начиная от бензола, обладают слегка видимой флуоресценцией (полосы поглощения видны в коротких длинах волн обыкновенного ультрафиолета), но флуоресценция увеличивается по мере усложнения структуры кольца, полосы поглощения близки к видимой области или в самой видимой области [202]. Использование флуоресцирующего спектра при решении аналитических проблем было ограничено, хотя некоторые ароматические соединения, находящиеся в более тяжелых нефтяных фракциях, дают характерные картины [203—204]. Но так как флуоресценция очень чувствительна к следам инородных веществ [205 ], то другой метод, ультрафиолетовая спектроскопия поглощения, должен быть использован в качестве дополнения к этим анализам. [c.190]

    Многоядерные ароматические соединения, анализ которых важен [c.423]

    Фотохимический обмен галогенов в ароматических соединениях. (Анализ продуктов реакции замещения типа АгХ + X -> АгХ + X, где X — галоген.) [c.177]

    Наибольший интерес представляет изучение влияния природы благородного газа на термодинамические характеристики растворения их в ароматических соединениях. Анализ данных [1] и рис. 1, 2 показывает, что при переходе от гелия к аргону все энтропийные характеристики возрастают. Величина А2°раств. и ее энтропийная составляющая в ряду гелий, неон, аргон резко уменьшаются. Изменение термодинамических характеристик растворения в ряду гелий — аргон можно связать с изменением степени ограничения трансляционного движения благородного газа при переходе из газообразного состояния в раствор (к). Расчет проводится по формуле [c.64]

    Методы кольцевого анализа могут применяться к группам с различным характером ароматических соединений, полученных экстракцией иля хроматографией. [c.390]

    В табл. 8 представлены результаты анализа фракции по типам составляющих ее молекул, вычисленные на основании графика рис. 13. Приведенные данные показывают, что нефть содержит 61% ароматических и 37% нафтеновых молекул. Менее четверти ароматических соединений состоит из алкилзамещенных все остальные ароматические соединения содержат одно или более нафтеновых колец. [c.394]


    Способ ASA (структурно-групповой анализ ароматических соединений) [2.18] для ориентировочного структурного анализа нефтяных смесей основан также на ИК-спектрометрии. ИК-вариант метода n-d-M не обнаруживает значительных структурных различий для нескольких проб минерального масла, а метод ASA выявляет заметную разницу в составе насыщенных структурных групп. [c.40]

    Поглощаемость меняется для олефинов, циклопарафинов и ароматических соединений. Очень часто может быть получена количественная информация об особых структурных элементах, даже если спектры слишком сложны для индивидуального анализа соединений. Используя характеристические частоты, установили методы [191—193] для группового анализа предельных углеводородов и предельно-ароматических смесей. Если известно общее содержание олефина, то типы олефинов могут быть установлены по данным спектров [196]. Для индивидуальных соединений в ароматической части сырого бензина [197], кипящих до 193° С, могут быть сделаны анализы, использующие технику разделения совместно со спектрами поглощения в инфракрасной области подобный же метод был предложен для парафино-нафтеновых смесей [198], кипящих до 132° С. Очень полезны обширные каталоги спектров чистых соединений, и многие специальные анализы возможны на базе стандартов [199]. [c.189]

    На основе имеющихся опытных данных был проведен технико-экономический анализ очистки 1000 м /ч биогаза следующего состава (по объему) 67,7% СН4, 27,1% СО2, 0,3% H2S, 4,9% воздуха, насыщенного парами воды и ароматическими соединениями. К составу очищенного газа предъявлялись требования содержание H2S<1 мг/м , влаги <1-10" % (1 млн ), метана 97% (об.). [c.304]

    Осколочная МС позволяет различить отдельные типы соединений, дающие изобарные ионы. Этим методом можно найти, например, концентрацию 21 типа компонентов в смеси углеводородов, насыщенных и ароматических сульфидов вместо 7 изобарных серий при низковольтной МС [304]. При анализе фракций, содержащих одновременно углеводороды, насыщенные и ароматические сернистые соединения, можно использовать разработанную Е. С. Бродским и др. [309] методику, учитывающую интенсивности двухзарядных ионов, характерных для-ароматических соединений. [c.38]

    Из анализа приведенных кинетических кривых также видно, что в начальный момент процесса сорбционной очистки при резком увеличении чистоты парафина (по коэффициенту пропускания) практически не удаляются ароматические соединения. Это позволяет сделать вывод о том, что ароматические соединения, содержащиеся в твердых парафинах, не влияют на их цвет и представлены углеводородами, идентифицируемыми методом ГХС как легкие ароматические [3], то есть соединениями с одним ароматическим кольцом и длинной парафиновой цепочкой. Сравнительно низкое содержание соединений, включающих ароматические фрагменты (по данным ИК-спектроскопии) подтверждает высказанное ранее предположение [3] о неароматической природе гетеросоединений, присутствующих в твердых парафинах. [c.115]

    С никоторых пор стал возможен анализ ароматических углеводородов Се, С, и Сд в бензиновых фракциях. Однако для болео высококипящих фракций в настоящее время анализ на индивидуальные компоненты невозможен вследствие бо.11ьшого числа изомеров в данных пределах ки- пения и близости температур кипения углеводородов различных классов. При разработке процессов переработки нефти чрезвычайно важно знать состав высококипящих фракций, например исходных и конечных фракций каталитического крекинга. Особенно важно знать содержание различных классов ароматических углеводородов. Хроматография является превосходным методом их количественного разделения. Типы ароматических соединений во фракции можно определить по спектрам поглощения в ультра- [c.286]

    Электронные спектры поглощения ароматических соединений широко используются в изучении углеводородной части нефтей, нефтепродуктов и других природных горючих ископаемых. Когда перешли к исследованию состава неуглеводородной части тех же продуктов, в частности соединений, содержащих серу и азот, наряду со всеми другими методами анализа стали привлекать и спектроскопию в ультрафиолетовой области. Возникла необходимость сбора и систематизации спектров поглощения нужных соединений, т. к. они были разбросаны по отдельным статьям и зарубежным каталогам, в которых, из-за отсутствия удобной системы, их было нелегко разыскать, не легче было добыть и сами каталоги. Это вызвало появление справочных книг [1, 2], которые в той или иной мере помогали идентифицировать выделенные из исследуемых продуктов типы соединений. [c.158]

    Полученная при гидрировании смолы углеводородная часть, как показывают данные хроматографического анализа, содержит 70% ароматических углеводородов. Бициклические ароматические соединения содержат в своем составе значительное количеств серы. Это говорит о том, что в исходной смоле преобладала сера, атомы которой входили в соединения циклического характера. При гидрировании остатка от первого гидрирования (выше 396°С) был получен гидрогенизат с более низким молекулярным весом, содержащий 79% углеводородов и 19,5% смолы. При гидрогени-зационном обессеривании смолы наблюдается дециклизация углеводородного остатку, что говорит о преобладании в структуре смол [c.125]

    Анализ ароматических углеводородов нефти. Исследование масс-спектров высокомолекулярных алкилбензолов, конденсированных и других типов ароматических соединений показало, что диссоциативная ионизация их молекул проте кает весьма селективно, вместе с тем опи, как правило, характеризуются высокой устойчивостью к электронному удару. Благодаря этому качестве аналитических могут быть использованы как пики молекулярных, так и осколочных ионов. Методом молекулярных ионов получают сведения о количестве насыщенных колец, присоединенных к ароматическому ядру. По масс-спектрам сложных смесей ароматических углеводородов суммированием высот пиков молекулярных ионов гомологических рядов от СпНгп-о до H2 i8 могут быть идентифицированы различные типы соединений и оценены их относительные количества. Однако чтобы сделать метод достаточно специфичным с точки зрения структурной идентификации, исследуемый образец должен быть предварительно подвергнут адсорбционному разделению на узкие фракции, содержащие преимущественно моно-, би-, три- или полицик-лические ароматические углеводороды. [c.168]


    Экспериментально подтверждено, что скорость и направленность химических реакций, в том числе реакции алкилирования,. в значительной степени зависят от распределения электронной плотности во взаимодействующих компонентах реакции. В соответствии с этим целесообразно обобщить имеющиеся в литературе данные о молекулярных диаграммах алкилирующих агентов и ароматических углеводородов. Анализ материалов показал, что в основном расчеты носят случайный, несистематический характер это привело к необходимости определения молекулярных диаграмм ряда алкилирующих агентов исходных и полученных ароматических соединений. Использовано несколько современных методов расчета, что позволяет сопоставить полученные данные и подтвердить преимущества или недостатки каждого (исследования проведены совместно с сотрудниками ИОХ АН СССР А. И. Иоффе, В. И. Фаустовым и С. П. Зильбергом). [c.29]

    Использование пиков молекулярных ионов для анализа типов ароматических соединений обладает определенными преимуществами в отношении простоты расчет предусматривает вычисление интенсивностей моноизотопных пиков, их суммирование и нормирование. Сложные матричные расчеты исключаются. Однако применение метода ограничено образцами, содержащими не более 2—4 типов углеводородов. [c.170]

    Ароматические углеводороды. Для количественного анализа типов ароматических углеводородов или структурных групп колебательные спектры применялись лишь в ограниченном числе случаев. Метод определения общего содержания ароматических соединений был описан Хейглем н др. [21], использовавшими линию комбинационного рассеяния в области 1600 см— , относящуюся к колебаниям сопряженной С=С связи ароматического кольца. Метод измерений аналогичен методу, предложенному этими авторами для определения общей непредельности. Для снижения влияния изменения положения линии в спектре для различных индивидуальных ароматических соединений бралось произведение коэффициента рассеяния на ширину линии у основания. Эта величина линейно связана с площадью под регистрируемым пиком. Среднее отклонение этой величины для 22 алкилбензолов составляло приблизительно 10%. [c.333]

    Применимость метода к анализу ароматических фракций ограничена фракциями, не имеющими нафтеновых колец и состоящими толт.ко из ароматических колец. Этот метод может быть рекомендован для анализа алкилированных ароматических соединений. Согласно общеприня1ым взглядам ароматические молекулы высококипящих нефтяных фракций прямой гонки почти всегда содержат нафтеновые кольца, поэтому метод, разработанный для алкилированных ароматических углеводородов, вероятно, по применим к газойлевым и масляным фракци>[м. [c.382]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Между онектрами люминесценции и поглощения существует определенная зависимость. Спектры люминесценции всегда сдвинуты в более длинноволновую область по сравнению со спектрами поглощения. В связи с тем, что методы УФ-спектро-окаиии наиболее эффективны ири анализе ароматических веществ, люминесцентные методы также используются для исследования этих соединений в нефтяных молекулярных растворах. Эталонные спектры ароматических соединений, встречающихся в нефтях и нефтепродуктах, представлены в работе [99]. Так, в спектре свечения нафталина выделяется набор полос различной интенсивности в интервале 320—340 нм. Фенантрен обладает характерными полосами в области 345—375 им, а антрацен — 370—430 нм. Следует отметить, что достаточно узкие полосы флуоресценции (короткоживущей люминесценции) могут быть получены лишь при низких темшературах е помощью эффекта Шпольско го [15]. В растворах происходит ущирение полос, и спектр флуоресценции обычно представляет широкую бесструктурную полосу. [c.57]

    Так. как в больипгнстве случаев крэкинг-бензины содержат наряду с непредельными соединениями также и ароматические углеводороды, анализ приобрета.ет особо сложный характер. Задачей его яв.тяется он[)еделение следующих групп углеводородов  [c.164]

    При анализе из каждой скважины отбирается как минимум одна проба на ароматические соединения, содержание которых обычно невелико, но может оказать существен1Гое влияние на выбор схемы процесса переработки и его проектирование. [c.286]

    В табл. 1 приведены результаты некоторых анализов тяжелых нефтяных остатков, применяемых в качестве сырья для коксования. Асфальтены выделяли путем двукратного осаждения 40-кратным по объему количеством петролейного эфира (н. к. —60 °С), предварительно очищенного от ароматических соединений, с поверхностным натяжением 17,2—17,4 дин1см. [c.15]

    Основоположники рентгеноструктурного анализа Дебай и Шерер впервые высказали идею о том, что графит можно рассматривать как прототип ароматических соединений [267]. Расстояние между углеродными атомами в молекулах ароматических леводородор приблизительно равно расстоянию между ними в решетке графита. Тем самым была установлена генетическая связь между шестичленными углеводородными ядрами и углеродными кольцами в решетке графита. [c.43]

    Различие и сходство химического состава смол и асфальтенов,. возможность образования последних из смол позволяет предполагать, что асфальтены являются продуктами конденсации смол. Молекулы асфальтенов имеют полициклическую структуру, в которой ароматические кольца расположены друг над другом (размер кольца 0,85—1,50 нм). Кольца соединены между собок парафиновыми цепочкамии ли нафтеновыми группами. По данным рентгено-структурного анализа можно предположить, что расстояние между трехмерными алифатическими или нафтеновыми группами составляет 0,55—0,60 нм. Толщина пачки ароматических колец равна 0,16—2,0 нм. Сравнение растворимости асфальтенов и других высококонденсированных ароматических соединений в органических растворителях позволяет сделать вывод, что ароматические структуры молекул асфальтенов содержат меньше пяти бензольных колец. [c.9]

    Были исследованы 24 индивидуальных соединения молекулярного веса от 180 до 500 (Сдз—Сд4), представляющих нормальные, моно-и диразветвленные парафины, циклогексаны, циклопентаны, моно-, ди- и трициклические ароматические соединения и соединения, содержащие в молекуле ароматические и циклопарафиновые кольца. Метод этот применялся также для анализа пяти неароматических фракций, полученных из авиационных смазочных масел, одного образца твердого парафина, выделенного из нефти, одного образца стирола и полистирола. [c.241]

    Большие возможности для изучения строения и для анализа ароматических соединений открывает использование протономагнитного резонанса. В замкнутых перекрывающихся л-электрон-ных системах ароматических ядер магнитное поле индуцирует сильные диамагнитные токи. У ароматических протонов возникает эффект кольцевых токов и соответствующее разэкранирова-ние (сдвиг в более слабое поле). Ароматические протоны дают обычно сигнал в интервале 2,0—3,5 т, что существенно отличает их от протонов других групп (ацетиленовые 7,5т, олефиновые 3,6—5,4 т, алифатические и циклоалкановые 8,5—9,8 т) [59, с. 90—102]. [c.135]

    Применение спектральных методов анализа является весьма эффективным средством изучения структуры ароматических соединений [59, с. 228], и онй пи-ирежнему используются в аналитической практике. Однако эти методы особенно эффективны при анализе сравнительно простых, содержащих небольшое число компонентов, смесей. Определение проводится в весьма разбавленных растворах, требуется сложная подготовка образцов в старых конструкциях приборов значительное время занимает анализ спектров. [c.135]

    Твердые ароматические углеводороды, не образующие комплекс с карбамидом, десорбированные с поверхности силикагеля изооктаном, судя по данным анализа, являются бициклическими соединениями с большим числом атомов углерода в боковых цепях изостроения. Они содержат, как и первые, примесь твердых сернистых соединений. После гидрирования этой фракции по методике И. А. Мусаева и Г. Д. Гальперна [37] были получены углеводороды, имеющие формулу С Н2п-з,8 и, следовательно, относящиеся к нафтеновому ряду. Сопоставляя данные анализа до и после гидрирования (табл. 21) и используя расчетные формулы и номограммы для определения среднего ряда и количества циклов в молекуле, но данным А. С. Великовского и С. Н. Павловой было установлено, что исследуемые углеводороды содержали в среднем до гидрирования 2,8 цикла в молекуле, из которых 1,7 цикла были ароматические и 1,1 цикла — нафтеновые. Данные спектрального анализа показали преимущественное наличие в этой фракции бициклических ароматических соединений. [c.44]

    Определение содержания нафтеновых углеводородов. После удаления из смеси непредельных и ароматических соединений в так называемом предельном остатке можно определить содержание нафтеновых и парафиновых углеводородов. Для этого используют различие их физических констант. Примерно с одинаковым успехом, с точки зрения точности анализа, применяют данные по плотностям, анилиновым точкам, показателям преломления и удельным рефракциям. Так как все эти величины для нафтенопарафиновых смесей подчиняются правилу аддитивности, то содержание нафтеновых углеводородов Ни в %(об.), в предельном остатке легко подсчитать по общей формуле  [c.64]

    Дальнейшие исследования в этом направлении, в частности, проведение количественного анализа методом ИК-спектроскопии фуллеренов С60 в сложных смесях органических соединений нефтяного происхождения, выявили необходимость выбора оптимальной полосы поглощения фуллеренов С60 из имеющихся четырех. Например, как видно из рис. 1.4, в ИК-спектре экстракта фуллеренсодержашего продукта полоса поглощения С60 при 1429 см накладывается на интенсивную полосу поглощения ароматических соединений, также присутствующих в образце, Это значительно затрудняет количественный анализ фуллеренов, в частности, при определении интенсивности данной полосы методом базовой линии, тогда как полоса поглощения С60 при 528 см" идентифицируется намного лучше (рис.4). [c.17]

    И, наконец, последняя проблема, с которой сталкивается исследователь при применении низких энергий ионизирующих электронов для количественного анализа, — получение калибровочных коэффициентов. Эта задача была успешно решена для различных типов ароматических соединений. Рассмотрение эксперимеггтальных данных по чувствительностям молекулярных ионов ароматических углеводородов [309] позволило установить ряд закономерностей, обеспечивших возможность полуколичественной оценки чувствительностей неизвестных соединений [310]. [c.187]

    Разработана методика экстракционного выделения парлфи-но-нафтеновых углеводородов из нефти, последующего их разделения на группы компонентов с использованием разработанной экспресс-схемы. Метод позволяет выделить и провести физикохимический групповой анализ парафино-нафтеновых углеводородов, ароматических соединений, смол, асфальтенов и гетерофунк-циональных компонентов. [c.104]

    Данному значению Ма, взятому в интервале 7,20...13,35, соответствует большое множество голоядерных и замещенных ароматических соединений. Чем больше степень замещения и количество атомов углерода в алифатическом обрамлении, тем больше размер и число теоретически возможных ароматических фрагментов молекул с данным Ма. В качестве ограничения используют данные рентгеноструктурного и ЯМР - спектрального анализа, а также по Мп, М, ..., ММР и т.д. Так,приведенные в табл. 1.7 сотообразные структуры с Ма= 8,8 не могут быть приняты за среднестатистические молекулы сырых коксов, поскольку их Мп меньше Мп = [c.41]


Смотреть страницы где упоминается термин Ароматические соединения анализ: [c.128]    [c.2]    [c.353]    [c.381]    [c.384]    [c.189]    [c.35]    [c.242]    [c.68]   
Руководство по газовой хроматографии (1969) -- [ c.359 ]

Руководство по газовой хроматографии (1969) -- [ c.359 ]

Руководство по газовой хроматографии (1969) -- [ c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ ароматических



© 2024 chem21.info Реклама на сайте