Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез синтез АТР

    Важнейшим процессом этого типа является идущий в зеленых растениях процесс фотосинтеза — синтеза из углекислого газа и воды различных органических соединений, например глюкозы  [c.242]

    Определепие радиоактивности катехинов, проведенное в тех же побегах параллельно с определением сахаров, показывает, что в отличие от сахаров, образующихся только в процессе фотосинтеза, синтез катехинов происходит не только на свету, но и в условиях, исключающих фотосинтез (рис. 39). [c.117]


    Для биосинтеза белков и других сложных органических соединений требуется затрата большого количества энергии. Основными источниками энергии в растениях, как известно, являются дыхание (окислительное фосфорилирование) и фотосинтез (фотосинтетическое фосфорилирование). Между интенсивностью синтеза белков и Интенсивностью дыхания существует тесная связь в молодых органах и тканях, характеризующихся высокой скоростью биосинтеза белков, интенсивность дыхания всегда была выше, чем в более старых органах. Без доступа кислорода или -при подавлении дыхания лод действием ингибиторов синтез белков прекращался. Фотосинтез также оказывал влияние на биосинтез белков и при повышении интенсивности фотосинтеза синтез белков -в растениях усиливался. При продолжительном нахождении растений в темноте в искусственных условиях, даже когда растения снабжаются извне питательными веществами (сахарами и нитратами), распад белков преобладает над их синтезом. [c.288]

    В такой концентрации цинк подавляет фотосинтез всех планктонных растительных организмов. Так как планктон служит начальным звеном пищевой цепи и главным пищевым ресурсом для многих видов рыб, то подавление фотосинтеза (синтеза крахмала и сахара в зеленых растениях с помощью солнечной энергии) может иметь далеко идущие последствия. [c.81]

    Хлорофилл, поглош,ая кванты света и используя поглощенную энергию для фотохимического разложения воды, участвует в процессе фотосинтеза. Синтез хлорофилла осуществлен в 1960 г. Р. Вудвордом и сотрудниками. [c.549]

    Биохимические процессы, лежащие в основе жизнедеятельности организмов, полностью подчиняются всем физическим и химическим законам, но биохимические реакции имеют и характерные особенности. В отличие от многих реакций общей химии биохимические реакции синтеза, распада и превращений веществ идут при обычном давлении и температуре живых организмов, причем их скорость обычно больше, чем скорость аналогичных реакций, осуществляемых в химических лабораториях или на заводах при высоких температурах и давлении. Это объясняется тем, что все биохимические реакции идут с участием ферментов. Са.ма воз.мож-ность осуществления главнейших реакций (фотосинтез, синтез белков, образование аденозинтрифосфорной кислоты и т. д.) обусловлена тем, что многие реакции идут не в однородной (гомогенной) среде, а на поверхности внутриклеточных частиц [c.45]


    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]

    Важнейшими фотохимическими реакциями такого рода являются, несомненно, реакции фотосинтеза, протекающие в растениях . К. А. Тимирязев, в результате тщательного изучения этого явления, с несомненностью установил, что синтез углеводов из углекислого газа и воды осуществляется растениями за счет энергии солнечного света, поглощаемого ими, и что к этому процессу полностью применим закон сохранения энергии. Работы К. А. Тимирязева нанесли решительный удар идеалистическим теориям, по которым такой синтез происходит под действием особой жизненной силы . [c.501]

    Запасы углерода в каменном угле, нефти и горючих газах, этих классических видах химического сырья, образовавшихся в отдаленные геологические эпохи, весьма велики и оцениваются в 10 000 млрд. т [1], но и они не безграничны, а главное, они не возобновляются в обозримый срок. Фотосинтез же поставляет за 60 лет столько органических веществ (в пересчете на углерод), сколько содержится во всех мировых запасах угля, нефти и газа. Угроза истощения запасов классических видов химического сырья вполне реальна. Поэтому растительное сырье в будущем может стать главным для промышленности органического синтеза. [c.186]

    Еще более ярким примером асимметрического синтеза является процесс фотосинтеза в растениях, где солнечная энергия превращается в химическую с помощью молекул хлорофилла. В этом многостадийном процессе ахиральный диоксид углерода превращается в конечном счете в о-глюкозу. [c.205]

    Фосфор играет исключительно важную роль в осуществлении обмена энергии в растениях. Энергия солнечного света в процессе фотосинтеза и энергия, выделяющаяся в процессах окисления, происходящих в растении, накапливается в растениях в виде энергии фосфатных связей определенных соединений. Эта энергия используется растением для роста, поглощения питательных веществ из почвы, синтеза органических соединений. Усиленное снабжение растения фосфором позволяет получать более ранний урожай и более высокого качества. [c.696]

    Может ли идти процесс, если А0р,т>0 или Д у,т->0 Может, но не самопроизвольно. Для его проведения надо затратить энергию. Примером может служить процесс фотосинтеза, идущий в растениях под воздействием солнечной энергии. Другим примером является протекание реакций, характеризующихся АС>0, при сопряжении их с реакциями, для которых Д0<0. При этом сумма величин АО (или АР) для всех стадий сопряженных реакций отрицательна. Например, для синтеза сахарозы  [c.95]

    К фотохимическим относятся реакции, протекающие под действием квантов света. Такие реакции многочисленны, а некоторые из них имеют жизненно важное значение. Фотохимическими являются реакции выделения кислорода и ассимиляции диоксида углерода в процессе фотосинтеза, образование озона из кислорода под действием ультрафиолетового излучения Солнца, природный синтез хлорофилла и т. п. Фотохимическое разложение бромистого серебра лежит в основе фотографического процесса. С фотохимическими реакциями связано явление люминесценции, выцветание красок и т. п. [c.200]

    Фотохимические реакции. К фотохимическим относятся реакции, обусловливаемые лучистой энергией главным образом видимой части спектра электромагнитного излучения. Например, смесь газон водорода и фтора при ее освещении взрывается бромистое серебро на свету разлагается с выделением металлического серебра, что широко используется в фотографии синтез сложных органических веществ растениями в процессе их жизнедеятельности также имеет фотохимическую основу (фотосинтез) многие краски на солнечном свету блекнут, выцветают и т. д. [c.143]

    Общая продуктивность фотосинтеза громадна ежегодно растительность Земли связывает 170 млрд тонн углерода. Помимо того растения вовлекают в синтез миллиарды тонн азота, фосфора, серы и других элементов. В результате ежегодно синтезируется около 400 млрд тонн органических веществ. Тем не менее при всей своей грандиозности природный фотосинтез — медленный и малоэффективный процесс, поскольку зеленый лист использует для фотосинтеза всего 1% падающей на него солнечной энергии. [c.608]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]


    Таким образом, суммарный результат фотосинтеза состоит в связывании диоксида углерода, окислении воды до молекулярного кислорода и синтеза углеводов. Образование кислорода как побочного продукта фотосинтеза не является универсальным свойством фотосинтезирующих организмов. Например, у некоторых бактерий фотосинтеза процесс выражается схемой [c.162]

    Микроэлементы повышают активность ферментов, катализирующих биохимические процессы в организмах растений, способствуют синтезу белков и нуклеиновых кислот, витаминов, сахаров и крахмала. Некоторые микроэлементы оказывают положительное действие на фотосинтез, ускоряют рост и развитие растений, созревание семян. [c.311]

    Очень важным является положение о том, что даже самые существенные природные процессы до сих пор изучены далеко не достаточно в силу сложности путей их протекания. Этот тезис вытекает с убедительностью из явлений синтеза углеводов при действии солнечного света фотосинтез для того и был рассмотрен несколько подробнее в учебном пособии по неорга- [c.348]

    В присутствии источника света растения поглощают диоксид углерода из воздуха. В этом процессе они усваивают углерод из диоксида углерода и выделяют кислород. Углерод используется растениями для синтеза различных углеводов. Весь этот процесс называется фотосинтез. [c.305]

    Остановимся на характеристике гомогенно-каталитического ферментативного катализа, который осуществляется при использовании биологических катализаторов—ферментов, представляющих собой природные белки, входящие в состав тканей. Ферментативный катализ является основой управления сложных жизненных процессов в растениях и животных организмах. Так, фотосинтез, брожение, дыхание, пищеварение, синтез белков, сокращение мышц являются каталитическими процессами, использующими в качестве катализаторов различные ферменты. [c.183]

    Важнейшим процессом этого тина является идущий в зеленых растениях ироцесс фотосинтеза — синтеза из двуокиси углерода и воды разлнчтн х органических соединений, наиример глюкозы  [c.254]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Производные пиридина встречаются в природе, и о некоторых из них пойдет речь в т. 2, разд. 17.5 и 17.7. Мы, однако, можем сразу же отметить тот факт, что очень важный биохимический окислительно-восстановительный процесс включает четвертичную соль амида никотиновой кислоты (никоти-намид, витамин РР). Биохимики называют это сложное соединение НАД (со-кращенпе от дкотиндмидаденинЗинуклеотид), и оно, вместе с подобным ему веществом Н А ДФ, играет значительную роль в процессах клеточного дыхания, фотосинтеза, синтеза карбоновых кислот с длинной углеродной цепью ( жирных кислот ), а также в процессе зрения. Ниже представлена схема процесса превращения НАД в его восстановленную форму. Заметьте, что окислительно- [c.635]

    Другой интересный вопрос, возникающий прн изучении фотосинтеза и хемосинтеза автотрофных бактерий, относится к роли, которую эти процессы могли играть в развитии жизни на Земле. До объяснения ван Нилем механизма бактериального фотосинтеза синтез органического вещества зелеными растениями казался единственным процессом, стоящим обособленно по отношению ко всем остальным биохимическим реакциям в живых организмах. Исследования ван Ниля создали недостающее звено между ц[иром зеленых растений и миром низпаих микроорганизмов. [c.129]

    ФОТОСИНТЕЗ — синтез растениями органич. веществ (углеводов, белков, жиров) из углекислого газа, воды, минеральных солей азота, фосфора и др. элементов с помощью энергии света. Ф.— основной процесс образования органич. веществ на Земле, определяющий круговорот углерода, кислорода и др. элементов, а также основной механизм трансформации солнечной энергии на нашей планете. При восстановлении 1 г-моля СОа до углеводного уровня запасается 112 ккал, а увеличение свободной энергии Д/ составляет 120 ккал. В процессе Ф. растенхм суши и океана усваивают в год 4-101 углерода, разлагают 1,2-101 т воды, выделяют 1-1011 кислорода и запасают 4-102 кал солнечной энергии в виде химич. энергии продуктов Ф., что в 10 с лишним раз превышает годовое потребление энергии. В пищу и на корм животным человечество расходует 2 млрд. т сухой массы продукции с.-х. растений, что составляет 1/50 часть от всей продукции Ф. [c.273]

    Обработанные таким образом листья не только сохраняют зеленый цвет, но также сохраняют способность к фотосинтезу, синтезу РНК и белка. Это особенно четко было показано на обработанных кинетином изолированных листьях табака [36]. Тиоурацил и хлорамфеникол ускоряют пожелтение листьев и распад РНК и белка в то же время при обработке кинетином количество РНК и белка в листьях возрастает. Этот эффект кинетина полностью подавляется тиоурацилом, хлорамфеникол же ингибирует только прирост белка. Однако ни один из этих ингибиторов не влияет на накопление растворимых азотистых соединений, индуцируемое кинетином [19]. И1 хлорамфеникол, и тиоурацил подавляют включение С -аденина в РНК и S -метионина в белки. Кинетин снимает ингибирующее действие хлорамфеникола, но не может предотвратить ингибирование тиоурацилом. [c.532]

    Фотосинтез Синтез органических веществ живыми организмами из двуокиси углерода и воды в присутствии света посредством фотохимических реактивных пигаен-тов [c.55]

    Итак, кванты света участвуют в жизненных процессах, как правило, через стабильные фотопродукты hv—> первичный лабильный продукт—>-стабильный фотопродукт— -биологический эффект. Стабильный продукт активно включается в метаболические процессы одним из двух возможных путей является непосредственным участником биохимических, метаболических реакций, например в качестве субстрата ферментативных реакций или интермедиата биосинтезов (образование хлорофиллида АТФ и НАДФНг при фотосинтезе синтез витамина В и т. д.) непосредственно не участвуя в биохимических реакциях, он меняет конформацию либо биополиме- [c.372]

    На клеточном уровне изучаются процессы фотосинтеза, синтеза и ресинтеза живого вещества на организуемом — продуктивность различных видов животных и растений на биоценотическом — продуктивность наземных и водных сообществ растений и животных наконец, на глобальном уровне — продуктивность всей биосферы. [c.468]

    В цитоплазме много ДНК. Часть ее сосредоточена в митохондриях -энергетических станциях клетки, а у растений - в пластидах, осуществляющих фотосинтез, синтез крахмала, нигментов и др. эти органеллы цитоплазмы размножаются в клетке делением. Найдена ДНК также и вне таких органелл. Что она делает , какова ее роль в жизни клетки ДНК органелл участвует в их размножении или функционировании, несет информацию о некоторых важных белках, а остальной цитонлазмической ДНК могут быть приписаны разные функции от регуляции генетической изменчивости или синтеза белка до просто паразитического существования без всякой функции. [c.114]

    Осуществляя синтез химических веществ, можно часть обычных изотопов заменить на редкие стабильные изотопы. Например, водород-1 можно заменить на водород-2, углерод-12 — на углерод-13, азот-14 — на азот-15, а кислород-16 — на кислород-18. С помощью таких жченых соединений можно изучать механизмы реакций, происходящих в живых тканях. Новатором в такого рода работе был американский биохимик Рудольф Шонхеймер (1898—1941), который, используя водород-2 и азот-15, провел важные исследования жиров и белков. После окончания второй мировой войны такие изотопы стали более доступны, что позволило провести более тщательное изучение механизмов реакций. Примером того, какую роль могут сыграть изотопы, служит работа американского биохимика Мелвина Келвина (род. в 1911 г.). В 50-х годах XX в. он применил углерод-14 для изучения механизма реакций фотосинтеза. Работу эту Келвин проделал с такой обстоятельностью, которая всего лишь двадцать лет назад считалась совершенно невозможной. [c.173]

    НАД Н, является молекулой-перено-счиком энергии, запасенной при химическом синтезе подобно тому, как в процессе фотосинтеза это осуществляет восстановленная форма ферредоксина. [c.329]

    Фотосинтез представляет собой эффективный вариант процесса, обратного указанным выше. Его темиовые реакции используют молекулы НАД Н и АТФ для восстановления СО2 в глюкозу, а световые реакции используют энергию поглощаемых фотонов для синтеза необходимых молекул НАДФ Н и АТФ. [c.338]

    То же относится и к химическим процессам. Взаимодействие водорода и кислорода с образованием воды может происходить самопроизвольно, и осуществление этой реакции дает возможность получать соответствующее количессво работы. Но, затрачивая работу, можно осуществить и обратную реакцию — разложения воды на водород и кислород, — например, путем электролиза. И другие химические реакции, которые по своим термодинамическим параметрам не могут в данных условиях совершаться самопроизвольно, можно проводить, затрачивая работу извне. Большей частью это осуществляют или путем электролиза, или при электрическом разряде в газах, или действием света, или же путем повышения давления (причем одновременно изменяются и условия проведения реакции). Из хорошо известных процессов такого рода можно назвать фотосинтез в растениях, получение натрия и хлора путем электролиза расплавленного хлористого натрия, получение металлического алюминия из бокситов путем электролиза, синтез аммиака при высоком давлении и др. [c.209]

    Этот процесс требует затрат энергил. Ее источником в фотосинтезе является солнечный свет. Кроме этого, необходимым элементом этого процесса является участие катализатора - зеленого пигмента раст ении - хлорофилла. Исследование этого вещества -- одна из драматических страниц истории химии. На этой страище славные имена К.А. Тимирязева. М.С. Цвета, Р. Вильштеттера, Г. Фишера, Р. Вудворда. Роберт Вудворд не только завершил исследования строения хлоро-фи.пиха, но сумел и реализовать его полный синтез  [c.258]

    С термодинамической точки зрения фотохимические реакции можно разделить на два класса. Один класс объединяет реакции, которые в данных условиях термодинамически (самопроиз вольно) проходить неспособны, для их протекания необходима затрата энергии, которая передается в виде световой энергии. Важнейшим примером такого процесса является фотосинтез осуществляемый растениями. Он состоит из серии реакций, которые в сумме описываются уравнением синтеза углеводов иа диоксида углерода и воды  [c.47]

    Хорошо известно, что АТФ как богатый энергией фосфат используется во многих биохимических процессах. Запасание химической энергии следует из возможности гидролиза АТФ до АДФ и Н3РО4 (около 25 кДж/моль). Поскольку реакция (8.46) может происходить независимо от восстановления СО2 в анаэробных условиях, представляется возможным первоначальное развитие организмов в направлении использования ими света для запасания энергии, а не для синтеза новых органических соединений. Возникновение собственно фотосинтеза было, таким образом, более поздним эволюционным этапом. [c.230]

    Особенно удивительным следует считать то, что передача аденозинтри-фосфатом свободной (способной произвести химическую работу) энергии оказывается возможной не для протекания вполне определенных специальных (специфически обусловленных набором случайностей) химических реакций, а совершается как-то универсально АТФ является действенным источником свободной энергии для очень большого набора разнообразных химических процессов, делая осуществимыми многие самые трудные и важные для жизни химические превращения к этому списку реакций можно причислить и процессы дыхания, и фотосинтез, и сокращение мышц, и синтез белков, а также нуклеиновых кислот с их наследственной информацией и т. п. [c.330]


Смотреть страницы где упоминается термин Фотосинтез синтез АТР: [c.278]    [c.338]    [c.346]    [c.258]    [c.211]    [c.188]    [c.132]    [c.608]   
Биохимия Том 3 (1980) -- [ c.39 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте