Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ ферментативные каталитические

    Природа каталитического влияния в гомогенных, гетерогенных и ферментативных каталитических реакциях определяется природой химической связи. Однако каждый из этих процессов характеризуется некоторыми специфическими особенностями, обусловленными главным образом строением катализатора — молекулы, иона в гомогенном катализе атома, молекулы, фазы в гетерогенном катализе молекулы белкового происхождения в ферментативном катализе. Существенную роль играют также особенности взаимодействия реагентов и катализатора с окружающей средой. Как и обычные хими- [c.622]


    Каталитические реакции разделяются на три основные группы реакции гомогенного, гетерогенного и микрогетерогенного катализа. Н. И. Кобозев считает, что современные каталитические теории вообще бессильны объединить эти три группы общим механизмом, так к ак они неверно трактуют природу активных центров и их строение. Главным препятствием к обобщению каталитических процессов является принимаемая всеми концепция кристаллической природы активных центров при гетерогенном катализе, что и пресекает пути перехода к гомогенным и ферментативным реакциям. [c.145]

    В заключение отметим чтобы модель фермента была действующей, она должна отвечать ряду критериев, характерных для ферментативного катализа, в том числе обладать субстратной специфичностью, т. е, селективно связывать субстрат. Каталитическая реакция, моделирующая ферментативный процесс, должна также подчиняться кинетике Михаэлиса — Ментен (явление насыщения субстратом) при этом должна увеличиваться скорость реакции и осуществляться би- и/или полифункциональный катализ [348], [c.265]

    Каталитические процессы можно разделить на две группы гомогенные и гетерогенные. В гомогенно-каталитических реакциях реагирующие вещества и катализатор составляют одну фазу, а в гетерогенно-каталитических реакциях — разные фазы. В особую группу выделены микрогетерогенные и ферментативные каталитические процессы. Микрогетерогенный катализ происходит в жидкой фазе с участием коллоидных частиц металлов в качестве катализаторов. Ферментативный катализ наблюдается в биологических системах с участием сложных комплексов (часто белковой природы), называемых ферментами. [c.95]

    В одной из статей было написано следующее Принято разделять каталитические процессы на три группы гомогенный катализ, гетерогенный катализ, ферментативный катализ . Укажите недостатки подобного разделения. [c.166]

    Ферментативный катализ. Реакции, катализируемые ферментами, можно отнести к группе гомогенных каталитических реакций. Они выделяются в специальную группу яо происхождению катализаторов, [c.616]

    Перспективы катализа необозримы. Благодаря тонкой избирательности некоторых катализаторов осуществлены и осуществляются различные многостадийные процессы, недоступные методам классической органической химии и осуществляющиеся как бы в одну стадию (синтез углеводородов, поликонденсации, полимеризации, синтезы на базе олефинов и ацетиленов и т, д.). Микрогетерогенные или ферментативные реакции, происходящие в организмах животных и растений, протекают очень сложны.ми и часто еще не достаточно ясными путями. Вероятно, в недалеком будущем настанет время, когда и эти процессы будут осуществлены обычными каталитическими путями, что явится, новой победной главой в эволюции катализа. [c.780]


    В целом на основании этих физико-химических механизмов можно ожидать суммарных эффектов ускорения более чем в 10 раз. Как видно, это вполне покрывает тот масштаб ускорений, который отличает ферментативный катализ от механизмов гомогенно-каталитического типа (см. гл. I). [c.69]

    Основные положения теории ферментативного катализа. Уникальные каталитические свойства ферментов обусловлены двумя особенностями их структуры многофункциональным характером активного центра и способностью к конформационным переходам. [c.240]

    Словом, успехи современной биохимии или биоорганической химии в области ферментативного катализа велики. Каталитический опыт живой природы перестал быть всего лишь далекой заветной мечтой химиков он стал достаточно ясным как в общих очертаниях, так и во многих деталях. И теперь есть возможность ему подражать, его перенимать, осваивать. [c.180]

    Типы ферментативного катализа. В результате образования комплекса происходит обмен электронами и протонами между ферментом и субстратом. Если фермент отдает электронную пару субстрату, т. е. если фермент является донором электронов, осуществляющим нуклеофильную атаку, которая определяет скорость ферментативной реакции, то имеет место нуклеофильный катализ. Скорость каталитической реакции определяется электронодонорной способностью нуклеофила, т. е. тех аминокислотных остатков активного центра, которые взаимодействуют с субстратом. Относительные скорости нуклеофильной атаки зависят от энергии, необходимой для доставки электронной пары к атому субстрата. В электрофильном катализе, напротив, фермент акцептирует пару электронов от субстрата. Электрофильный катализ характерен для многих ферментов, имеющих в своем составе атомы металлов. Металлы с переменной валентностью являются электрофильными катализаторами, принимающими электронную пару. [c.70]

    В природных ферментативных процессах для каждой стадии сложного процесса существует свой весьма активный, но специфический катализатор, так что весь процесс как бы передается по эстафете — каталитической цепи — от одного катализатора к другому, за счет чего значительно выигрывает селективность превращения. Аналогичное явление можно осуществить и в техническом катализе. При этом создается возможность проведения в одном реакторе многостадийных процессов. Классическим примером простейшего процесса каталитической системы может служить одностадийная изомеризация парафинов на бифункциональном катализаторе и окиси алюминия и платины, протекающая следующим образом (применительно к бутану)  [c.47]

    Катализатор снижает энергию активации со 198 до 134 кДж/моль. Все гомогенные каталитические реакции в растворах с известной степенью условности можно разделить на три группы 1) кислотноосновной катализ, 2) окислительно-восстановительный катализ (катализ комплексными соединениями или координационный катализ), 3) ферментативный катализ. [c.623]

    Классификация каталитических процессов и реакций производится по ряду признаков. По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на две основные группы — гомогенные и гетерогенные. При гомогенном катализе катализаторы и реагенты находятся в одной фазе — газе или растворе, а при гетерогенном — в разных фазах. В особую-группу следует выделить микрогетерогенный, в частности ферментативный катализ, происходящий в жидкой фазе с участием коллоидных частиц в качестве катализаторов. [c.106]

    Ниже будут рассмотрены кинетические закономерности для грех наиболее изученных классов гомогенных каталитических процессов кислотного, основного и ферментативного катализа. [c.245]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    В свою очередь гомогенный катализ можно разделить по типу применяемого катализатора на кислотно-основной (в присутствии кислот и оснований), окислительно-восстановительный (в присутствии ионов металлов переменной валентности), координационный или металлокомплексный (промежуточные продукты — комплексные соединения) и гомогенный газофазный (например, окисление диоксида серы кислородом в присутствии следов оксидов азота). К гомогенно-каталитическим процессам относят и ферментативный катализ биохимических процессов, происходящих в живых организмах под влиянием сложных белковых катализаторов — ферментов (энзимов). [c.234]


    Внутримолекулярный кислотно-основной катализ представляет собой эффективный способ ускорения реакций в органических системах. Однако было бы полезно оценить вклад этого вида катализа в ферментативный катализ. Существует принципиальное различие между ферментативными химическими реакциями и реакциями в растворе. Скорость каталитических реакций в растворе описывается уравнениями второго порядка скорость увеличивается с увеличением концентрации катализатора. Реакции [c.209]

    Уникальные каталитические свойства ферментов (см. гл. I) обусловлены весьма сложным механизмом их действия, многие стороны которого еще до конца не раскрыты. Всеобщее признание, однако, получило представление, согласно которому ферментативный катализ обусловлен по крайней мере тремя основными причинами во-первых, тем, что сорбция субстрата на ферменте протекает так, чтобы облегчить последующую химическую реакцию во-вторых, полифункциональ-ным характером химического взаимодействия между ферментом и сорбированным субстратом (или субстратами) и, наконец, в-третьих, эффектами микросреды, характеристики которой (диэлектрическая проницаемость, полярность и др.) в области активного центра могут существенно отличаться от соответствующих показателей водного раствора. В настоящей главе будут рассмотрены именно эти три физикохимических механизма ускорений в реакциях, катализируемых ферментами. Наиболее подробно остановимся на первом из них ( 1—4), поскольку именно здесь удалось глубоко и количественно проникнуть в природу движущих сил катализа. [c.34]

    С другой стороны, образование связи Е-Н не в переходном состоянии, а в исходном (в комплексе ХЕ- НУ) играет отрицательную роль в катализе чем прочнее фермент-субстратный комплекс (чем более отрицательные значения принимает величина ДО ), тем меньше значение [НУ], равное концентрации субстрата, до которой ферментативный процесс (2.1) по скорости превалирует над гомогенно-каталитической реакцией (2.2), и тем меньше, как видно из (2.21), сам эффект ускорения. Все эти положения иллюстрирует рис. 13. [c.42]

    Структурные и термодинамические предпосылки механизма сближения и ориентации в ферментативном катализе. Итак, для эффективности катализа важно, чтобы замораживание реагирующих центров X и Y, которое происходит в комплексе XE-RY (и сопровождает образование связи E-R), как можно больше приблизило реакцию к переходному состоянию X...Y. Для этого необходимо, чтобы строение активного центра в высшей мере было комплементарным по отношению к той структуре молекулы субстрата, которую она должна принять в переходном состоянии реакции. Именно поэтому активный центр ферментов расположен обычно в складках полипептидных цепей, образующих как бы щель . Где-то в глубинных участках этой щели расположены аминокислотные остатки, взаимодействующие с субстратом. Благодаря такой структуре активного центра при переходе молекулы субстрата из свободнодвижущегося состояния (из раствора) в сорбированное состояние (когда она, образно говоря, втискивается в активный центр) происходит необходимое для реакции замораживание вращательных степеней свободы и сближение ее с каталитически активными группами белка. [c.56]

    Большинство подобных явлений наблюдалось в ферментативных каталитических реакциях, многие из которых рассматриваются как процессы гетерогенного катализа. В качестве примера такой реакции можно привести окисление малоновой кислоты броматом калия в разбавленной серной кислоте в присутствии ионов церия как катализатора. Эту реакцию исследовал Жаботинский [237]. [c.85]

    Внутримолекулярный катализ. В этом разделе будут рассмотрены собственно каталитические внутримолекулярные реакции, где одна из функциональных групп (У) в молекуле V—R—X выступает в роли катализатора какого-либо превращения соседней группы X. Такие системы можно рассматривать как близкие модели ферментативных реакций. [c.82]

    Ферментативные каталитические процессы были известны еще в древности, но их не связывали с ускоряющим действием примесей. В 1785 г. Ирвинг открыл ускоряющее действие солодового экстракта на осахаривание крахмала, а в 1797 г. Дейтман наблюдал разложение паров этилового спирта при их соприкосновении с раскаленной глиной. Дэви и Деберейнер (1817— 1823) открыли катализирующее действие платиновой черни на соединение водорода с кислородом. Фарадей (1825—1834) детально изучил явления этого типа и впервые указал на роль поверхности в контактном катализе. Берцелиус (1835) показал, что катализ является новым особым классом явлений и ввел самый термин катализа. Современное определение катализа было формулировано Оствальдом (1888), впервые четко указавшим на то, что катализатор лишь ускоряет реакции, но не может изменять равновесного состояния. [c.453]

    Как уже отмечалось выше, внутримолекулярный катализ отражает многие особенности ферментативного катализа. Поэтому неудивительно, что исследователи часто пытались строить модели ферментативных каталитических систем с использованием внутримолекулярных катализаторов. Одна из таких моделей — деацилирование ацилхимотрипсина — приведена в разд. 10.1.4. Другим примером служат модели зависимых от витамина В12 ферментов. С их помощью моделируется ферментативная активация связей углерод—водород, идущая в присутствии кофермента В12 [23]. При этом не следует забывать, что в [c.270]

    Из других принципов активации нужно выделить необходимость координационной ненасыщен-ностн комплексно-связанного иона в металлоэнзимах (см.,например,рисунок) и широко используемый в ферментативном катализе принцип каталитических цепей, например  [c.209]

    Своеобразную и важную роль играют многие процессы ферментативного катализа. Катализаторами в них служат ферменты (энзимы), которые представляют собой сложные органические вещества, принадлежащие обычно к белкам с высоким молекулярным весом, вырабатываемым в животных или растительных организмах и обладающим высокой каталитической активностью. Каждый фермент катализирует определенный химический процесс или определенную группу химических превращений. Ферментативный катализ играет больщую роль п жизнедеятельности организмов и широко используется в промышленности н в быту, в особенности при переработке пищевых продуктов (хлебопечение, квашение, винокурение и др.). При этом основными являются процессы брожения, т. е. такие процессы, в которых изменение химического состава вещества происходит в результате жизнедеятельности тех или других микроорганизмов, например дрожжей, плесеней или соответствующих бактерий. Действующим началом в этих случаях служат различные ферменты, вырабатываемые этими микроорганизмами, Ферменты сохраняют свою активность и способндсть действовать и будучи выделенными из микроорганизмов. [c.494]

    Особенности ферментативного катализа с точки зрения общей теории каталитических процессов заключаются в следующем. Каталитический процесс протекает в ограниченной области, называемой активным каталитическим центром фермента. Активный центр фермента содержит активные группы — доноры или акцепторы электронов (группы, содержащие пиридиновое кольцо или имидазольные кольца, хиноидные группы, комплексированные ионы металлов и др.). Необходимым условием каталитического действия ферментов является структурное соответствие активного центра и субстрата. [c.633]

    Представления И. Берцелиуса и Л. Пастера о сущности каталитических явлений подверглись критике Ю. Либиха, который подошел к оценке катализа одностронне и механистически, так как усматривал действие катализаторов лишь в определенных свойствах и состояниях материальных частиц, совершенно исключая энергетические воздействия. По Ю. Либиху причиной ферментативных и вообще каталитических реакций ...является способность тела, находящегося в состоянии разложения или ином активном состоянии, вызывать ту же деятельность в соприкасающихся с ним телах и делать их способными претерпевать те же изменения, которые оно само испытывает . [c.17]

    Можно провести много аналогий между гетерогенным ката лизом при полимеризации олефинов и тем способом, которьш осуществляется катализ природных химических реакций, в ча стности ферментативный катализ. Действительно, гетерогенны катализ во многих отношениях напоминает ферментативный. Мо лекула субстрата сталкивается с активным центром на поверхно сти твердого катализатора, образуя адсорбционный комплекс Адсорбированный субстрат реагирует в одну или несколько ста дий под влиянием каталитических групп активного центра. на конец продукт десорбируется (пли удаляется) из активного цент ра. Таким образом, и для ферментативного, и для гетерогенного катализа говорят об активном центре и образовании комплекса субстрата с активным центром. Осмысление этих понятий помогает сопоставить неферментативный и ферментативный катализ. Тем не менее существует и принципиальное различие, поскольку большипстпо ферментов несут только один активный центр па молекулу, тогда как в гетерогенных катализаторах на одну ча- [c.198]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Было показано, что синтетические сополимеры также проявляют каталитические эффекты, сравнимые с ферментативным катализом. С целью ныяснения возможности кооперативного взаимодействия имидазольной и гидроксильной групп получен сополимер винил-имидазола и винилового спирта. Он напоминает фермент а-химотрипсин. Однако сополимер лишь немногим более активен, чем поливинилимидазол в реакциях гидролиза эфиров. [c.298]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    Если же АО впутр О (и, следовательно, переходное состояние ферментативной реакции стабилизировано связью Е-К), из уравнения (2.21) следует, что всегда существует такой интервал концентраций субстрата, в котором VI /уи> 1, т. е. ферментативный процесс протекает быстрее гомогенно-каталитической реакции. Однако благоприятствующие катализу значения концентрации субстрата КУ не должны быть слишком большими, как видно из уравнения (2.21), причем верхняя граница этого интервала дана значением [c.42]

    При достаточно высоких концентрациях субстрата скорость ферментативной реакции определяется превращением промежуточного фер-мент-субстратного комплекса (уравнение 2.8). Ч.тобы оценить эффективность катализа в этих условиях, запишем на основании (2.11) соотношение скоростей ферментативной и гомогенно-каталитической реакций (2.21) в ином виде  [c.50]

    Подобного рода эффекты возможны также и в ферментативных реакциях, поскольку микросреда активного центра многих ферментов обнаруживает по своей полярности или диэлектрической проницаемости свойства скорее органических растворителей, чем воды (см. гл. I). По аналогии с э ектами, наблюдаемыми в нефермента-тиБных реакциях, десольватация реагирующих групп в активных центрах ферментов может дать ускорение более чем в 10 раз [291 (если сравнивать ферментативный процесс с гомогенно-каталитической реакцией, идущей в воде). В литературе пока не описаны системы, для которых было бы строго доказано участие сольватационных эффектов или электростатической стабилизации, в ферментативном катализе. [c.67]

    Представление об исключительно точном геометрическом соответствии молекулы субстрата активному центру фермента как об источнике высокой специфичности при ферментативном катализе послужило основой для исследования каталитических свойств молекул циклоамилоз, обладающих строгой и хорошо известной геометрией [891. Химически циклоамилозы представляют собой циклические полимеры, содержащие не менее шести Л(+)-глюкопиранозных структурных единиц, соединенных а-(1,4)-глюкозидными связями. Участок цепи циклоамилозы имеет следующий вид  [c.110]

    Зависимость скоростей реакций, катализируемых химотрипсином, от pH обнаруживает оптимум при pH 8. [42]. Механизм зависимости химотрипсино-. вого катализа от pH заключается в следующем [6—9, 13, 43, 44]. Эффективные константы скоростей химических стадий ферментативной реакции 2 и сохраняют постоянное значение при щелочных и нейтральных значениях pH, но при дальнейшем понижении pH они уменьшаются. Сигмоидальный характер этих зависимостей указывает на участие в катализе ионогенной группы фермента с рЛГа7. Многие годы полагали, что этой группой является имидазольный фрагмент His-57, однако позднее она была идентифицирована как карбоксил Asp-102 [45]. Ее протонизация разрушает водородные связи в составном нуклеофиле (рис. 32), что приводит к потере ферментом каталитической способности. [c.132]

    Стадии переноса протона в ферментативном катализе. Характерная особенность ферментативных реакций — участие в активных центрах многих ферментов в качестве каталитически активных групп сильных кислот и оснований. Основные закономерности кислотно-основного катализа в ферментативном действии рассмотрены в гл. П. Здесь оста- новимся на кинетике элементарной стадии переноса протона. [c.273]

    Ионогенные группы имеют особенно важное значение для ферментативного катализа. В активных центрах всех изученных до настоящего времени ферментов обнаружены функциональные группы, способные присоединять или отщеплять протоны в области pH, оптимальной для проявления ферментативной активности. Исходя из этого, естественно, что рН-эффекты ишользуются для выявления каталитически важных ионогенных групп фермента и выяснения способов их участия в общем механизме ферментативного катализа. [c.218]


Смотреть страницы где упоминается термин Катализ ферментативные каталитические: [c.263]    [c.262]    [c.212]    [c.215]    [c.403]    [c.259]   
Аналитическая химия Том 2 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гомогенно-каталитические реакции. Ферментативный катализ

Катализ ферментативный



© 2025 chem21.info Реклама на сайте