Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй закон начало термодинамики формулировка

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]


    Установление статистического характера второго начала термодинамики — заслуга Больцмана. С этой точки зрения второй закон термодинамики можно выразить формулировкой  [c.43]

    Второе начало (закон) термодинамики является одним из важнейших законов природы. Он охватывает широкий круг явлений природы, поэтому его смысл выражают в различных формулировках. Закон сохранения энергии (первое начало термодинамики) не содержит указаний о направлении процессов в изолированной системе. Второе начало (закон) термодинамики позволяет предвидеть направление химических процессов в изолированной системе. [c.41]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, так же как и первый, был установлен как постулат, обоснованный всем опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо нз следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, по существу равноценные. Строгий вывод следствий из второго начала термодинамики связан со значительными затруднениями. Вслед за методом Карно — Клаузиуса — Томсона были разработаны два более строгих метода первый — киевским профессором Н. И. Шиллером в 1896 г. (этот метод в 1909 г. был развит Каратеодори) и второй К. А, Путиловым в 1937 г. [c.281]

    Обе приведенные формулировки второго начала термодинамики fie связаны с какими-либо конкретными представлениями о строении материи. Однако, как впервые показал Л. Больцман (1896), содержание второго закона обусловлено особенностями строения, а именно молекулярной природой вещества. Иными словами, второе начало (в отличие от первого) относится исключительно к системам из большого числа частиц, т. е. таким, поведение которых может быть охарактеризовано статистическими величинами, например температурой и давлением. В связи с этим с точки зрения молекулярно-кинетических представлений второе начало термодинамики можно сформулировать следующим образом все процессы, происходящие в природе, стремятся перейти самопроизвольно от состояния менее вероятного к состоянию более вероятному. Для молекул наиболее вероятным является беспорядочное, хаотичное движение, т. е. тепловое движение. Работа характеризуется более или менее упорядоченным движением частиц, каковое является менее вероятным. Отсюда самопроизвольный переход работы в теплоту можно рассматривать как переход молекулярной системы от упорядоченного движения частиц к более вероятному — хаотическому. [c.65]


    Клаузиус дал следующую формулировку второго начала термодинамики теплота не может переходить сама собой от более холодного тела к более теплому. Позднее слова сама собой Клаузиус заменит другими — без компенсации , что означает без каких-либо изменений термодинамического состояния рабочего тела или других привлекаемых к участию в процессе тел. Такая формулировка второго закона термодинамики именуется постулатом Клаузиуса. Справедливость постулата Клаузиуса в его первой формулировке представляется самоочевидной и обеспечивается огромной совокупностью опытных данных, связанных, в первую очередь, с наблюдениями, и можно непосредственно убедиться, что это заключение имеет силу при всех обстоятельствах. Этот постулат Клаузиуса надо понимать в широком аспекте. Ибо, как Клаузиус неоднократно и подробно разъясняет, — это основное положение ни в коем случае не должно просто означать, что тепло непосредственно не переходит от более холодного тела к более теплому, последнее само собой понятно и следует уже из определения температуры. Настоящий смысл положения Клаузиуса заключается в том, что тепло вообще никаким способом, с помощью какого бы то ни было процесса, не может быть перенесено с более холодного тела на более теплое, без того, чтобы не осталось других изменений ( компенсации ). Только пользуясь этим более широким толкованием положения Клаузиуса, можно, исходя из него, делать заключение относительно каких угодно природных процессов .  [c.89]

    Классическая термодинамика, развитая во,второй половине XIX в., строилась именно на приведенных выше формулировках второго закона. Основной недостаток этих формулировок заключается в том, что они представляются несколько расплывчатыми, как бы неосязаемыми, не вскрывают физический смысл второго начала и пределы его приложимости. Остается неясным, каким образом можно придать второму началу математический характер, как им на деле воспользоваться для анализа явлений, для нахождения новых закономерностей и связи между различными физическими величинами. [c.90]

    Этот постулат не вытекает из первого начала термодинамики и является самостоятельным законом природы, который находится в полном соответствии со всем опытом человечества. Однако формулировка постулата, данная Клаузиусом, допускала неоднозначное толкование этого закона. Поэтому в дальнейшем развитии учения о втором начале термодинамики были высказаны другие формулировки постулата второго начала, более строгие. Планку принадлежит, вероятно, наиболее удачная  [c.25]

    Существует ряд причин, почему второе начало термодинамики относят к наиболее трудным для изучения законам физики. Первая нз них состоит в том, что второе начало необходимо было сначала открыть и сформулировать в виде некоторого суждения (постулата) о свойствах тепловых машин, следствием которого явился вывод о существовании новой функции состояния — энтропии S. В качестве такого постулата выступает, например, утверждение невозможно построить периодически действующую машину, производящую работу за счет теплоты наименее нагретых тел системы . Однако в этой формулировке нет ни слова об энтропии. В отличие от большинства законов теоретической физики фактическое содержание второго начала термодинамики — введение в обиход науки новой функции состояния S — отделено от исходного постулата достаточно длинной цепью логических построений, а из самого постулата совершенно не очевидно указанное выше утверждение. Кроме того, можно привести ряд внешне совсем несхожих утверждений, которые с равным основанием могут считаться формулировками второго начала. [c.37]

    Второе начало термодинамики, так же как и первое, не может быть теоретически выведено из каких-нибудь других законов. Оно является постулатом, обосновываемым всем опытом, накопленным человечеством. Доказательством его служит тс, что опытные данные о свойствах различных термодинамических систел не находятся в противоречии с ним или с каким-либо из следствий, строго вытекающих из него, при правильном их применении. Так же, как и в случае первого начала, можно дать различные формулировки второго начала, так как существует несколько положений, логически связанных между собой, и если принять одно из них в качестве исходного, можно вывести из него остальные. [c.136]

    Перейдем к краткому обзору возникновения и развития химической термодинамики. Прежде всего следует отметить, что учение о тепловой энергии как движущей силе, возникло в,непосредственной связи с проблемой создания тепловых (паровых) двигателей в эпоху промышленной революции. Задача усовершенствования паровых двигателей потребовала теоретического анализа их работы, что и привело к выводам и формулировкам двух термодинамических законов, известных нод названием первого и второго начал термодинамики. Развитие же химической термодинамики тесно связано с термохимическими исследованиями, с изучением тепловых эффектов реакций и других эффектов. [c.410]

    Уравнение (1,21) в термодинамике было получено довольно сложным путем. Поскольку (1,21) нельзя вывести на основе первого начала термодинамики и известных законов физики, то первоначальная задача заключалась в том, чтобы доказать существование функции состояния 5 на основе какого-либо предположения (оно и принималось за формулировку второго начала термодинамики), которое вместе с тем можно было бы считать обобщением результатов опыта. В середине прошлого века такие данные содержались в теории тепловых машин, и поэтому до сих пор в общей и химической термодинамике большое место занимает теория циклических процессов и анализ пере.-ходов теплоты в работу. Необходимое и достаточное условие существования функции состояния 5 можно записать в виде условия [c.22]


    В книге Томсона перечисляются семь основных постулатов бессилия , т. е. семь основных законов природы, изложенных в отрицательной формулировке. В эти семь постулатов бессилия входят первое и второе начала термодинамики. [c.114]

    Второе начало термодинамики. Направление естественных процессов. Второе начало термодинамики является результатом обобщения большого числа наблюдений н представляет собой один из фундаментальных законов природы. В формулировке, предложенной М. Планком и Кельвином (В. Томсон), второе начало утверждает, что невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к поднятию некоторого груза и соответствующему охлаждению теплового резервуара. Р. Клаузиус предложил другую формулировку переход теплоты от холодного тела к более теплому не может происходить без компенсации. Компенсация означает, что для переноса теплоты от холодного тела к горячему в циклическом процессе нужно дополнительно затратить некоторую работу, переходящую в конечном счете в теплоту и поглощаемую нагретым телом. Если процесс нециклический, то компенсация означает изменение термодинамического состояния рабочего тела. Так, например, газ может производить работу расширения за счет поглощения теплоты, и в квазистатическом процессе вся теплота превратится в работу. Однако термодинамическое состояние газа в конце процесса будет отличаться от исходного. [c.38]

    Это дополнительное условие приводит к формулировке второго начала термодинамики лля равновесных процессов в адиабатных системах в виде закона возрастания энтропии (см. 17) [c.62]

    Однако в пользу классического пути построения второго начала говорят следующие соображения. Метод и границы термодинамики приводят к неизбежности концентрировать внимание на взаимных превращениях теплоты и работы, как макроскопических форм передачи энергии. Сама математическая формулировка первого закона термодинамики связана с этим обстоятельством. Всякие попытки формулировать закономерность, которой следуют все наблюдаемые взаимные превращения теплоты и работы, естественно приводят к формулировкам Клаузиуса, В. Томсона или Планка. Ограничения возможности превращения теплоты в работу приводят к общим критериям направления процесса и условиям равновесия. [c.109]

    Второе начало термодинамики является всеобщим законом природы, значение которого столь же велико, как и значение закона сохранения энергии. В своих главных выводах второй закон никогда не расходился с опытом. Однако если этот закон подвергнуть строгой критике, то придется признать, что он в своей обычной формулировке не может быть универсально справедли-126- [c.126]

    Эта формулировка второго закона является наименее удачной из всех существующих. Раявитие подобной концепции привело Клаузиуса к отвергнутой сейчас теории тепловой смерти вселенной. Наиболее полно вопросы обоснования начал термодинамики рассмотрены А. А. Гухманом в книге Об основаниях термодинамики .—Яриж. ерев. [c.236]

    Следующий важнейший шаг как с точки рения построения кинетической теории газов, так и одновременно с точки зрения развития обш,ей проблемы статистических закономерностей в физике был сделан Больцманом, который, исходя из конкретных представлений механики о взаил5одейстиии молекул га.чл посредством парных столь новений, вывел свое основное интегро-дифференциальное ураипепие для функции расиределения частиц но скоростям. Это уравнение, называел5ое кинетическим уравно нием Больцмана, представляет собой математическую формулировку статистического закона изменения во времени и пространстве распределения молекул газа но скоростям, обусловленное как внешними воздействиями сил и полей па газ, так и взаимодействием молекул газа между собой благодаря их столкновениям. Кинетическое уравнение позволило с помощью /-теоремы Больцмана дать атомистическое истолкование второго начала термодинамики. При этом был вскрыт статистический смысл понятия энтропии, установлена связь энтропии с вероятностью состояний ансамбля частиц газа. [c.14]

    Замечательный (но до сих пор недостаточно оцененный и общепризнанный) английский физик МакКлэйр (С. У. Р. МсС1аге) независимо разработал аналогичный подход, проясняющий механизм получения работы за счет химической реакции, особенно для ферментативных процессов. МакЮ1эйр начал свой глубокий анализ проблемы с новой формулировки второго закона термодинамики, ввел [c.84]

    В ЭТИХ сообщениях Томсоном и Клаузиусом было сформулировано первое начало термодинамики (принцин эквивалентности теплоты и работы). Далее Клаузиус на основе анализа цикла Карно показал, что вывод Карно представляет собой выражение некоторого общего закона Тепло не может переходить само собой от более холодного тела к более теплому без соответствующей компенсации. Это — одна из формулировок второго начала термодинамики. У. Томсон также дал формулировку второго начала. Он распространил действие этого закона на всю Вселенную и пришел к известному выводу о неизбежности тепловой смерти Вселенной, что вызвало справедливые возражения ученых. [c.411]

    Но понятие энтропии возникло только спустя два с липшим тысячелетия. Ввел его в 1870 г. немецкий физик Клаузиус, и этим он положил начало второму закону термодинамики. Однако мы сначала напомним первый закон. Ему можно дать различную формулировку, но суть одна — энергия не может возникнуть из ничего а исчезнуть бесследно. Применительно к тепловым процессам этот закон утверждает, что изменение внутренней энергии системы 17 равно количеству сообш,енной системе теплоты за вычетом работы А, совершенной системой Д / = — Q — А. Ясно, что в системе, не совер- [c.30]

    Некоторые из формулировок второго начала наглядны и непосредственно связаны с опытом, другие более абстрактны, но являются более удобными для математического развития теории. По Томсону Различные виды энергии стремятся переходить в теплоту, а теплота, в свою очередь, стремится рассеяться, т. е. распределиться между всеми телами наиболее равномерным об разом . В этой формулировке содержится представление о гом, что в природе происходит процесс рассеяния тепловой энергии, вследствие чего второе начало термодинамики иногда называют законом рассеяния или деградации тепловой энергии. По Клаузиусу Теплота никогда не переходит с более холодного тела на более горячее, тогда как обратный переход протекает самог произвольно . [c.69]

    В виде оформленной научной системы, исходящей из работ Карно и закона сохранения и превращения энергии, термодинамика появилась в 50-х годах ХТХ в. в трудах Клаузиуса и Томсона (Кельвина), давших современшле формулировки второго начала термодинамики и введших важнейшие понятия энтропии и абсолютной температуры. Основным методом исследования термодинамики XIX в. был метод круговых процессов. [c.11]

    Остается также прежней формулировка второго начала термодинамики в виде закона о существовании и во-1рас(ании энгропии, другие же формулировки этого начала изменяются. Выберем за исходное такое выражение второю начала, которое непосредственно следует из опыта по превращению тепло 1Ы в работу и работы в геплоту, [c.142]

    Однако несмотря на огромное значение Первого начала для аксиоматки термодинамики, оно одно не объясняло принципиального отличия теплоты от работы, не позволяло предсказывать направление и пределы протекания различных процессов и положение равновесия. Все эти задачи были решены после постулирования Второго начала. Основная идея этого закона была высказана в 1824 г. французским инженером С. Карно. Наблюдая за работой водяной мельницы, он сравнил падение воды с переходом тепла от более нагретого тела к менее нагретому. И вода, и тепло в этих процессах могут совершать работу, зависящую от перепада уровней высот или температур. Карно сформулировал принцип, в дальнейшем получивший его имя для производства работы тепловой машиной необходимы два термостата с различными температурами. Это была исторически первая формулировка Второго начала. Однако Карно, исходивший из теории теплорода, нарушил в своих рассуждениях Первое начало, так как по аналогии с водяной мельницей допустил, что количество теплорода в системе остается неизменным, т. в. получил работу практически из ничего. Другими словами, он получил вечный двигатель первого рода, запретив своим принципом создание вечного двигателя второго рода, получающего работу из одного термостата. Позже стало ясно, что теплота, полученная системой из горячего термостата, равна сумме теплоты, отданной системой холодному термостату и совершенной работы. [c.313]


Смотреть страницы где упоминается термин Второй закон начало термодинамики формулировка: [c.58]    [c.55]    [c.436]   
Краткий курс физической химии Издание 3 (1963) -- [ c.194 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики

Второй закон второе начало термодинамики

Второй закон начало термодинамики

Закон второй

Закон термодинамики

Закон термодинамики второй

Начала тел

Начала термодинамики второе

Термодинамика формулировки

Термодинамики второй

Формулировки второго начала термодинамики



© 2024 chem21.info Реклама на сайте