Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй закон второе начало термодинамики

    Выражение (11,42) является математической записью второго начала термодинамики для обратимых процессов. Подставляя в уравнение первого начала термодинамики (П,7) вместо 6Q равную величину TdS из уравнения (11,42), получим аналитическое выражение первого и второго законов термодинамики для обратимых процессов  [c.71]

    В 1889 г. В. Нернст сформулировал правило произведения растворимости, применив закон действия масс к выпадению осадка электролита из его насыщенного раствора произведение концентраций ионов малорастворимой соли в ее насыщенном растворе есть величина постоянная при постоянной температуре. Это правило — одно из следствий второго начала термодинамики в применении к равновесной системе раствор — осадок. Система осадок — маточный раствор представляет собой гетерогенную, двухфазную систему. В процессе растворения или кристаллизации концентрация осаждаемого вещества в растворе остается постоянной, поэтому ее активность в заданных стандартных условиях принимается равной единице. Активность растворенного вещества в насыщенном растворе постоянна а=/(. [c.70]


    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]

    Живые организмы подчиняются всем основным законам природы. К ннм полностью применим закон сохранения н превращения энергии, а также второе начало термодинамики. [c.75]

    Для обратимых процессов второе начало термодинамики выступает как закон о существовании и сохранении энтропии. При обратимых процессах в адиабатно-изолированной системе энтропия согласно уравнению (11,91) остается постоянной. Если же обратимый процесс происходит в неизолированной системе, то ее энтропия может меняться, но тогда изменяется энтропия окружающей среды при этом суммарная энтропия всех тел, участвующих в обратимом, процессе, остается постоянной. [c.113]

    Установление статистического характера второго начала термодинамики — заслуга Больцмана. С этой точки зрения второй закон термодинамики можно выразить формулировкой  [c.43]

    Максвелл, Больцман и Гиббс установили связь второго начала термодинамики с молекулярно-кинетическими представлениями, что привело к статистическому толкованию второго закона. Именно статистический подход позволил вскрыть специфическую особенность тепловых явлений, определить их качественное своеобразие и характеризовать их необратимость. При таком подходе стали совершенно ясными пределы применимости второго закона термодинамики. [c.91]

    Существенно отметить, что нелинейная термодинамика коренным образом изменяет статус второго начала термодинамики. Действительно, оказывается, что при необратимых процессах вдали от равновесия открытой системы этот закон определяет не только необходимость разрушения старых структур, но и возмож- [c.350]

    Второе начало термодинамики — это общий закон природы, действие которого простирается на самые разные системы. Второе начало термодинамики носит статистический характер и применимо только к системам из большого числа частиц, т. е. таким, поведение которых подчиняется законам статистики. Второе начало получает более полное физическое разъяснение в статистической термодинамике. [c.109]


    В основе термодинамического анализа равновесных состояний систем и направленности протекающих в системах процессов лежит второй закон ( второе начало ) термодинамики. Как и первый закон, он имеет характер аксиомы, обобщающей эмпирические сведения. Для него также предложено много различных формулировок, из которых наиболее часто используют следующие невозможен самопроизвольный переход энергии (в форме теплоты) от менее нагретого тела к более нагретому  [c.69]

    Основы ее были даны еще Бернулли (1738) и, отчасти, Ломоносовым (1746). В середине XIX в. труды Клаузиуса, Максвелла, Кельвина н др. дали настолько законченную картину, что возникла надежда на основе механики объяснить с помощью кинетической теории все свойства материи. Вскоре однако выяснилось, что один из основных физических законов — второе начало термодинамики — не укладывается в рамках обычной механики и основанной на ней кинетической теории и что сама кинетическая теория не может быть строго обоснована одними лишь законами механики. Однако Больцман показал, что второе начало может быть получено из кинетической теории, если последнюю дополнить законами теории вероятностей. На этой почве возникла статистическая механика Больцмана и Гиббса. Сейчас, когда термодинамика повидимому достигла пределов своего развития и вряд ли может дать еще принципиально новые вклады в науку, кинетическая теория, дополненная квантовыми представлениями, является самым мощным орудием современного теоретического исследования. На протяжении курса мы встретим много примеров разнообразного ее применения, здесь же ограничимся лишь теми приложениями, которые непосредственно относятся к идеальным газам. [c.145]

    К замкнутой системе, находящейся в состоянии истинного равновесия, можно применить правило фаз Гиббса, являющееся общим и строгим законом — следствием второго начала термодинамики. [c.40]

    Термодинамика базируется на двух основных законах, получивших название первого и второго начал термодинамики. Оба начала выведены из обобщения практического опыта. [c.47]

    Таким образом, основанная на незаконном абсолютизировании второго начала термодинамики идеалистическая теория тепловой смерти , отрицая вечность движения материи, тем самым отрицает закон сохранения и превращения энергии. Концепция тепловой смерти обязывает не только согласиться с тем, что материя приходит в состояние, лишенное движения, но и допустить, что вселенная возникла в результате некоторого творческого акта, создавшего как самую вселенную, так и разность энтропий и температур в различных ее частях. Естественно, что это метафизическое положение об абсолютном начале и конце вселенной не научно и несовместимо с диалектическим материализмом. [c.99]

    Обе приведенные формулировки второго начала термодинамики fie связаны с какими-либо конкретными представлениями о строении материи. Однако, как впервые показал Л. Больцман (1896), содержание второго закона обусловлено особенностями строения, а именно молекулярной природой вещества. Иными словами, второе начало (в отличие от первого) относится исключительно к системам из большого числа частиц, т. е. таким, поведение которых может быть охарактеризовано статистическими величинами, например температурой и давлением. В связи с этим с точки зрения молекулярно-кинетических представлений второе начало термодинамики можно сформулировать следующим образом все процессы, происходящие в природе, стремятся перейти самопроизвольно от состояния менее вероятного к состоянию более вероятному. Для молекул наиболее вероятным является беспорядочное, хаотичное движение, т. е. тепловое движение. Работа характеризуется более или менее упорядоченным движением частиц, каковое является менее вероятным. Отсюда самопроизвольный переход работы в теплоту можно рассматривать как переход молекулярной системы от упорядоченного движения частиц к более вероятному — хаотическому. [c.65]

    С философских позиций ложность тезиса о тепловой смерти мира была вскрыта Ф. Энгельсом (1875—1876) в его классическом труде Диалектика природы . Он отмечает, что закон возрастания энтропии (второе начало термодинамики), распространенный на всю Вселенную, не совместим с законом сохранения превращения энергии, так как, исходя из теории тепловой смерти , мы непременно сталкиваемся с качественным уничтожением энергии, т, е. с преобразованием ее в вид, в котором она становится не способной к обратным превращениям. [c.74]

    Клаузиус дал следующую формулировку второго начала термодинамики теплота не может переходить сама собой от более холодного тела к более теплому. Позднее слова сама собой Клаузиус заменит другими — без компенсации , что означает без каких-либо изменений термодинамического состояния рабочего тела или других привлекаемых к участию в процессе тел. Такая формулировка второго закона термодинамики именуется постулатом Клаузиуса. Справедливость постулата Клаузиуса в его первой формулировке представляется самоочевидной и обеспечивается огромной совокупностью опытных данных, связанных, в первую очередь, с наблюдениями, и можно непосредственно убедиться, что это заключение имеет силу при всех обстоятельствах. Этот постулат Клаузиуса надо понимать в широком аспекте. Ибо, как Клаузиус неоднократно и подробно разъясняет, — это основное положение ни в коем случае не должно просто означать, что тепло непосредственно не переходит от более холодного тела к более теплому, последнее само собой понятно и следует уже из определения температуры. Настоящий смысл положения Клаузиуса заключается в том, что тепло вообще никаким способом, с помощью какого бы то ни было процесса, не может быть перенесено с более холодного тела на более теплое, без того, чтобы не осталось других изменений ( компенсации ). Только пользуясь этим более широким толкованием положения Клаузиуса, можно, исходя из него, делать заключение относительно каких угодно природных процессов .  [c.89]


    Тщательный анализ показал, что первое и второе начало термодинамики не позволяют решить этой задачи. Необходимо привлечь какое-то дополнительное условие, не вытекающее из двух основных законов термодинамики. В. Нернст предположил, что такое дополнительное условие состоит в том, что две кривые АН == ф (Т) и АО == г з (Т) не только имеют общую точку при Т = О, но имеют в этой точке и общую касательную  [c.102]

    Все изложенное, как уже было подчеркнуто, логически не вытекает из первого и второго начала термодинамики, а требует некоторого дополнительного постулата. Таким является уравнение (III.5.2) [или уравнения (III.5.7) и (III.5.8)]. Этот постулат получил название теплового закона (или тепловой теоремы) Нернста. [c.103]

    Термодинамика как научная дисциплина сложилась в начале XIX в. на основании данных по изучению перехода теплоты в механическую работу (с греческого Легте и dynamis — теплота и движение). В настоящее время термодинамика как одна из дисциплин с наиболее общим подходом в характеристике физико-химических явлений, устанавливает взаимосвязь между различными видами энергии, изучает возможность, направленность и пределы самопроизвольно текущих процессов. Раздел этой науки, изучающий химические реакции, фазовые переходы (кристаллизация, растворение, испарение), адсорбцию, взаимосвязь химической и других видов энергии, а также переход энергии от одной части системы к другой в различных химических процессах называется химической термодинамикой. Изучение происходящих в природе явлений с позиций термодинамики не требует знания причин и механизмов идущих процессов, представлений о строении вещества и т. п. Теоретическо базой этого раздела физической химии являются основные законы — первое и второе начало термодинамики. Первое начало, характеризующее общий запас энергии в изолированной системе, носит всеобщий характер и является отражением закона сохранения энергии второй закон термодинамики устанавливает понятие энтропии и выполняется при определенных ограничениях. В настоящей главе представляется возможным только кратко остановиться на основных положениях. [c.10]

    I. в основе расчета энтропии вещества по термическим данным лежит тепловой закон Нернста или постулат Планка, согласно которым энтропия твердых чистых кристаллических веществ при абсолютном нуле равна нулю 5о=0 (см. разд. I. 10). Это положение не следует из первого и второго начал термодинамики, а является самостоятельной закономерностью, базирующейся на экспериментальных данных и представлениях статистической механики. Подробное изучение энтропий при низких температурах показало, что постулат Планка соблюдается далеко не для всех веществ, т. е. энтропия многих из них при абсолютном нуле имеет некоторое небольшое значение (порядка 3—4 Дж/моль-К). Однако, поскольку для расчета равновесий нужны значения энтропии не самих веществ, участвующих в реакции, а их алгебраическая сумма, то значение Д5о оказывается в большинстве случаев очень малым, что и позволяет произвести вычисления с достаточной точностью, если ею пренебречь. Ввиду того, что вблизи абсолютного нуля все вещества находятся в твердом состоянии, постулат Планка позволяет рассчитать энтропии при любой заданной температуре. [c.378]

    Существует ряд причин, почему второе начало термодинамики относят к наиболее трудным для изучения законам физики. Первая нз них состоит в том, что второе начало необходимо было сначала открыть и сформулировать в виде некоторого суждения (постулата) о свойствах тепловых машин, следствием которого явился вывод о существовании новой функции состояния — энтропии S. В качестве такого постулата выступает, например, утверждение невозможно построить периодически действующую машину, производящую работу за счет теплоты наименее нагретых тел системы . Однако в этой формулировке нет ни слова об энтропии. В отличие от большинства законов теоретической физики фактическое содержание второго начала термодинамики — введение в обиход науки новой функции состояния S — отделено от исходного постулата достаточно длинной цепью логических построений, а из самого постулата совершенно не очевидно указанное выше утверждение. Кроме того, можно привести ряд внешне совсем несхожих утверждений, которые с равным основанием могут считаться формулировками второго начала. [c.37]

    Еще более существенное значение имеет броуновское движение для понимания второго начала термодинамики. Когда коллоидная частица самопроизвольно поднимается в броуновском движении, потенциальная энергия системы возрастает, а следовательно теплота окружающей среды превращается в механическую работу в отсутствие начальной разности температур. Таким образом, второе начало не применимо к отдельной частице, поскольку оно является вероятностным законом. [c.28]

    Все эти изменения свойств раствора в зависимости от его концентрации по сравнению с чистым растворителем определяются законами Рауля (1882), которые были установлены сначала экспериментально, но затем оказалось, что они являются следствием второго начала термодинамики и их можно получить аналитически. Они полностью справедливы только для разбавленных растворов, в которых можно пренебречь силами взаимодействия между молекулами растворенного вещества. Свойства растворов определяются не массой, а числом молей растворенного вещества, [c.182]

    Эти две группы вопросов являются предметом химической термодинамики. В основе решений задач, подобных указанным, лежат два фундаментальных закона природы — первое и второе начала термодинамики. [c.7]

    Подведем итог сказанному. Итак, переход системы из равновесного в неравновесное состояние допустим, но вероятность значительных отклонений от равновесия, связанных с заметным уменьшением энтропии изолированной системы, практически нулевая. В то же время небольшие отклонения от равновесия происходят очень часто в какие-то моменты времени энтропия системы уменьшается. Статистическая интерпретация энтропии, следовательно, раскрывает смысл второго начала термодинамики и указывает границы его прнмени мости закон возрастания энтропии в изолированной системе (и постоянства энтропии при равновесии) справедлив лишь, если пренебречь флук-туационными процессами. [c.74]

    Понятие энтропии лежит в основе второго начала термодинамики, которое часто называют также законом энтропии. Существует много формулировок этого закона — в зависимости от той области, где его применяют (механика, теплотехника, электродинамика, химия и др.). Одна из важнейших ( юрмулировок для химической термодинамики в изолированных термодинамических системах самопроизвольно могут протекать только такие процессы (в том числе и химические реакции), при которых энтропия системы возрастает. [c.169]

    Современная наука начисто отвергает ложную концепцию о тепловой смерти мира. Колоссальный запас знаний, накопленный человечеством За всю историю его развития, убедительно доказывает и то. что мир бесконечен, и то, что развитие его происходило вечно и вечно будет продолжаться. Основная ошибка гипотезы Клаузиуса заключается в том, что второе начало термодинамики, в отличие от первого начала, не является абсолютным законом природы, а имеет относительный характер. Этот факт был вскрыт в работах Больцмана (1895) и Смо-луховского (1914). Эти ученые показали, что нельзя Вселенную рассматривать как замкнутую изолированную конечную систему, а потому к ней неприменимо второе начало термодинамики. Естественно считать, что при иных условиях существования материи, сильно отличающихся от тех, которые имеют место на Земле, процессы могут протекать и в обратном направлении, т. е. с убыванием энтропии. Об этом свидетельствуют наблюдения астрономов и астрофизиков за рождением новых миров. Кроме того, к явлениям микромира, как известно, второе начало термодинамики также неприменимо. [c.93]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    Второе начало термодинамики является всеобщим законом природы, значение которого столь же велико, как и значение закона сохранения энергии. В своих главных выводах второй закон никогда не расходился с опытом. Однако если этот закон подвергнуть строгой критике, то придется признать, что он в своей обычной формулировке не может быть универсально справедли-126- [c.126]

    В 1876 г. американский физико-химик Дж. У. Гиббс установил простой закон, который служит средством классификации всех систем, находящихся в состоянии истинного равновесия. Этот общий закон, являющийся следствием второго начала термодинамики, называется правилом фаз Гиббса. Для его понимания необходимо рассмотреть понятие степени свободы. Степени свободы — это независимые термодинамические параметры фаз системы (температура Т, давление р, концентрация t), находящихся в равновесии, изменение которых в определенных пределах не вызывает исчезновения одних и образования других фаз. Их число, называемое вариантностью системы, будем обозначать через /. В зависимости от числа степеней свободы различают инвариантную систему (/ = 0), моновариантную (f = 1), дивариантную (/ = 2) и т. д. Инвариантные системы могут существовать лишь при единственном сочетании р, Т и . У моновариант-ных систем можно произвольно изменять (в определенных пределах) только один параметр, не нарушая равновесия в системе (каждому значению переменного параметра отвечают строго определенные значения остальных). У дивариантных систем можно менять независимо друг от друга два параметра и т. д. [c.125]

    Уравнение (XIII, 31) можно получить, разложив в ряд АН— = (( Т) и другими способами. Например, нет необходимости, чтобы члены разложения содержали целые степени Т. Вместо того, чтобы начинать разложение с члена, содержащего Р, можно начать с члена, содержащего 7 (где а. = ). Этим подтверждается, что для доказательства теплового закона нельзя исходить только из первого и второго начал термодинамики уравнение (XIII, 27) из них не вытекает. [c.415]

    Второе начало термодинамики дает возможность разделить все допускаемые первьгм законом термодинамические процессы на самопроизвольные и несамопроизвольные, протекающие в данных условиях. Второй закон отрицает возможность обращения самопроизвольного процесса без внешнего воздействия. [c.45]

    Второе положение — постулат о существовании температуры, или нулевой закон термодинамики. Свое второе название этот постулат приобрел в связи с тем, что вопрос об особых свойствах температуры возник в связи с обоснованием второго начала термодинамики уже после открытия обоих начал. Между тем логически он им предшествует. Отсюда и название — нулевой закон. Речь идет о следующем. 1 .1личне теплообмена между системами можно установить многими методами экспериментально физики. Системы, пе обменивающиеся теплотой, — это системы, находящиеся в тепловом равновесии. Однако в макроскопической физике условия равновесия всегда записывают в виде равенства некоторых обобщенных сил Рк —Рк"- [c.11]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Больцман Людвиг (1844—1906) — австрийский физик, один из основоположников статистической физики и физической кинетики. Обобщил закон распределения частиц газов по скоростям. Им дана статистическая трактовка второго начала термодинамики. Выведен закон излучения абсолютночерного тела (закон Стефана—Больцмана). [c.210]

    В науке часто пользуются функциями, характеризующими состояния систем, и составляют таблицы, которые применяют для расчетов. В термодинамике такие таблицы строят для энтальпий и свободных энергий — функций, вытекающих соответственно из первого и второго начал термодинамики. Законы термодинамики являются г мпирическими. Они отражают вековой опыт человечества. Однако современная наука, особенно статистическая физика, раскрывает связь между опытными законами термодинамики и характеристиками атомов и молекул. [c.7]

    С позиций закона сохранения энергии (первого начала 1ермоди-намики) оба вида энергии идентичны но с позиций закона, определяющего превратимость видов энергии (второго начала термодинамики), эти виды энергии существенна различаются [7, 31]. [c.20]

    Основополагающий вклад в Т. х. внесен такж Г. И. Гессом (основной закон термохимии, 1840), Г. Гельмгольцем (применение второго начала термодинамики к хим. р-циям, 1882), Я. Вант-Гоффом (термодинамика хим. р-ций н растворов, 1883—90), А. Ле Шателье (принцип смещения равновесия, 1883—88), В. Нернстом (третье начало термодинамики, 1906), Г. Льюисом (метод термодинамич. активностей, 1907), И. Пригожиным (неравновесная термодинамика систем с хим. р-циями). [c.567]


Смотреть страницы где упоминается термин Второй закон второе начало термодинамики: [c.127]    [c.35]    [c.97]    [c.854]    [c.11]    [c.109]    [c.47]   
Термодинамика (0) -- [ c.37 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики

Второй закон начало термодинамики

Второй закон начало термодинамики

Второй закон начало термодинамики аналитическое выражение

Второй закон начало термодинамики формулировка

Закон второй

Закон сохранения материи — 12. Обменные процессы в организмах — 13. Закон сохранения энергии — 14. Первое начало термодинамики— 16. Второе начало термодинамики. Энтропия—18. Третье начало термодинамики — 20. Критика тепловой смерти вселенной — 21. Принципы термохимии — 24. Свободная энергия — 28. Второе начало термодинамики и организмы

Закон термодинамики

Закон термодинамики второй

Начала тел

Начала термодинамики второе

Термодинамики второй



© 2024 chem21.info Реклама на сайте