Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Второй закон начало термодинамики

    Второй закон (начало) термодинамики [c.17]

    В данных условиях в системе могут протекать разные процессы, в которых энергия системы сохранится постоянной (первый закон). Однако обычные наблюдения подсказывают, что происходят лишь те процессы, которые приводят систему к состоянию покоя (т.е. равновесия). В силу того, что состояние равновесия есть свойство системы и может быть описано функцией, второй закон (начало) термодинамики определяет направление и степень протекания таких процессов. Согласно этому закону, существует функция состояния, называемая энтропией 8, которая определяется для любого обратимого процесса [c.26]


    Второй закон (начало) термодинамики................................................17 [c.52]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]

    О возможности и направлении протекания процессов можно судить на основании второго закона термодинамики. Этот закон (как и первый) является недоказуемым постулатом и основывается на большом числе опытных данных. Направленность процессов отмечал еще Ломоносов, когда в 1747 г. писал ...холодное тело 3, погруженное в тело А, очевидно, не может воспринять большую степень теплоты, чем какую имеет А . Это утверждение близко к одной из формулировок второго закона (начала)  [c.32]

    Первый закон термодинамики позволяет составить энергетический баланс термодинамического процесса, но не дает никаких указаний о его возможности и направлении. Происходящие в природе и осуществляемые в технологии процессы, как правило, имеют направленность— самопроизвольно совершаются только в одном направлении, хотя первый закон не запрещает их протекание и в обратном направлении. Например, раствор образуется самопроизвольно, но не может сам собой разделиться на составляющие его компоненты. Все реальные процессы протекают так, что со временем достигают конечного состояния, которое обычно называют равновесным. Учение о равновесий, в частности химическом равновесии, дает возможность предсказать направление процесса, т. е. решить вопрос о возможности той или иной реакции и полноте ее протекания с образованием конечных продуктов. При этом важно решать такие задачи не только качественно, но и овладеть методами количественного расчета равновесий. Как и первый закон, второй закон (начало) есть результат обобщения многовекового опыта человечества. [c.54]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, так же как и первый, был установлен как постулат, обоснованный всем опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо нз следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, по существу равноценные. Строгий вывод следствий из второго начала термодинамики связан со значительными затруднениями. Вслед за методом Карно — Клаузиуса — Томсона были разработаны два более строгих метода первый — киевским профессором Н. И. Шиллером в 1896 г. (этот метод в 1909 г. был развит Каратеодори) и второй К. А, Путиловым в 1937 г. [c.281]


    Среди выведенных начал нет второго закона классической термодинамики Клаузиуса. Оказывается, природа его не знает. Следовательно, вместе с ним теряют силу и все его запреты, включая тепловую смерть мира, неосуществимость вечного двигателя второго рода, по терминологии В. Оствальда (вечного реального самопроизвольного движения с трением), невозможность практического использования теплоты одного источника (источника одной температуры) — земли, воды или воздуха, невозможность преобразования теплоты в работу [c.9]

    Так как в настоящее время вселенная далека от тепловой смерти , хотя и движется только в направлении к ней, то, следовательно, вселенная имела начало, она возникла в противоречии со вторым законом термодинамики (имеющим абсолютное значение) в результате какого-то творческого акта, не подчиняющегося законам природы. [c.106]

    Третий закон термодинамики не имеет такого общего характера, как первый закон термодинамики (на его основе получены две термодинамические функции V и Н) и второй закон термодинамики, который вводит в термодинамику новую функцию-энтропию 5. Третий закон термодинамики определяет только нижнее граничное значение энтропии для начала отсчета температуры. Отклонение энтропии от нулевого значения при температурах, близких к абсолютному нулю, связано с частичной аморфизацией твердого тела (дефекты в решетке) или с тем, что вещество содержит примеси (появление энтропии смешения). Однако эти отклонения не исключают возможности расчета изменения энтропий при химических реакциях, так как ошибка в расчете будет составлять значение Р п 2. [c.216]

    Вывод о недостаточности первого начала термодинамики для определения направления и предела протекания процессов привел к установлению второго начала термодинамики. Второе начало термодинамики, так же как и первое начало, является постулатом, обобщением опытных данных. Доказательством второго начала может служить то, что все выводы, вытекающие из него, до сих пор всегда находили подтверждение на опыте. В 1824 г. С. Карно установил основные положения второго начала термодинамики. В середине XIX в. Клаузиус, Томсон и Максвелл показали, что второе начало термодинамики — один из наиболее общих законов природы .  [c.109]

    Второе начало термодинамики — это общий закон природы, действие которого простирается на самые разные системы. Второе начало термодинамики носит статистический характер и применимо только к системам из большого числа частиц, т. е. таким, поведение которых подчиняется законам статистики. Второе начало получает более полное физическое разъяснение в статистической термодинамике. [c.109]

    Для обратимых процессов второе начало термодинамики выступает как закон о существовании и сохранении энтропии. При обратимых процессах в адиабатно-изолированной системе энтропия согласно уравнению (11,91) остается постоянной. Если же обратимый процесс происходит в неизолированной системе, то ее энтропия может меняться, но тогда изменяется энтропия окружающей среды при этом суммарная энтропия всех тел, участвующих в обратимом, процессе, остается постоянной. [c.113]

    В основе термодинамического анализа равновесных состояний систем и направленности протекающих в системах процессов лежит второй закон ( второе начало ) термодинамики. Как и первый закон, он имеет характер аксиомы, обобщающей эмпирические сведения. Для него также предложено много различных формулировок, из которых наиболее часто используют следующие невозможен самопроизвольный переход энергии (в форме теплоты) от менее нагретого тела к более нагретому  [c.69]

    К замкнутой системе, находящейся в состоянии истинного равновесия, можно применить правило фаз Гиббса, являющееся общим и строгим законом — следствием второго начала термодинамики. [c.40]

    Существенно отметить, что нелинейная термодинамика коренным образом изменяет статус второго начала термодинамики. Действительно, оказывается, что при необратимых процессах вдали от равновесия открытой системы этот закон определяет не только необходимость разрушения старых структур, но и возмож- [c.350]

    Термодинамика базируется на двух основных законах, получивших название первого и второго начал термодинамики. Оба начала выведены из обобщения практического опыта. [c.47]

    Обе приведенные формулировки второго начала термодинамики fie связаны с какими-либо конкретными представлениями о строении материи. Однако, как впервые показал Л. Больцман (1896), содержание второго закона обусловлено особенностями строения, а именно молекулярной природой вещества. Иными словами, второе начало (в отличие от первого) относится исключительно к системам из большого числа частиц, т. е. таким, поведение которых может быть охарактеризовано статистическими величинами, например температурой и давлением. В связи с этим с точки зрения молекулярно-кинетических представлений второе начало термодинамики можно сформулировать следующим образом все процессы, происходящие в природе, стремятся перейти самопроизвольно от состояния менее вероятного к состоянию более вероятному. Для молекул наиболее вероятным является беспорядочное, хаотичное движение, т. е. тепловое движение. Работа характеризуется более или менее упорядоченным движением частиц, каковое является менее вероятным. Отсюда самопроизвольный переход работы в теплоту можно рассматривать как переход молекулярной системы от упорядоченного движения частиц к более вероятному — хаотическому. [c.65]


    Выражение (11,42) является математической записью второго начала термодинамики для обратимых процессов. Подставляя в уравнение первого начала термодинамики (П,7) вместо 6Q равную величину TdS из уравнения (11,42), получим аналитическое выражение первого и второго законов термодинамики для обратимых процессов  [c.71]

    С философских позиций ложность тезиса о тепловой смерти мира была вскрыта Ф. Энгельсом (1875—1876) в его классическом труде Диалектика природы . Он отмечает, что закон возрастания энтропии (второе начало термодинамики), распространенный на всю Вселенную, не совместим с законом сохранения превращения энергии, так как, исходя из теории тепловой смерти , мы непременно сталкиваемся с качественным уничтожением энергии, т, е. с преобразованием ее в вид, в котором она становится не способной к обратным превращениям. [c.74]

    Живые организмы подчиняются всем основным законам природы. К ннм полностью применим закон сохранения н превращения энергии, а также второе начало термодинамики. [c.75]

    Таким образом, флуктуация представляет собой явление, как бы обратное явлению диффузии, хотя оба они — результат теплового движения. Если диффузия как всякий самопроизвольный процесс должна, в соответствии со вторым началом термодинамики, идти необратимо, то флуктуация указывает на то, что второе начало термодинамики имеет статистический характер, т. е. оно неприменимо к отдельным индивидуальным частицам или к малому числу их. В обоих явлениях мы видим одно из доказательств справедливости закона материалистической диалектики—единства противоположностей. [c.303]

    Таким принципом, устанавливающим, какие именно процессы возможны и какие невозможны, является второе начало (или второй закон) термодинамики. [c.88]

    Клаузиус дал следующую формулировку второго начала термодинамики теплота не может переходить сама собой от более холодного тела к более теплому. Позднее слова сама собой Клаузиус заменит другими — без компенсации , что означает без каких-либо изменений термодинамического состояния рабочего тела или других привлекаемых к участию в процессе тел. Такая формулировка второго закона термодинамики именуется постулатом Клаузиуса. Справедливость постулата Клаузиуса в его первой формулировке представляется самоочевидной и обеспечивается огромной совокупностью опытных данных, связанных, в первую очередь, с наблюдениями, и можно непосредственно убедиться, что это заключение имеет силу при всех обстоятельствах. Этот постулат Клаузиуса надо понимать в широком аспекте. Ибо, как Клаузиус неоднократно и подробно разъясняет, — это основное положение ни в коем случае не должно просто означать, что тепло непосредственно не переходит от более холодного тела к более теплому, последнее само собой понятно и следует уже из определения температуры. Настоящий смысл положения Клаузиуса заключается в том, что тепло вообще никаким способом, с помощью какого бы то ни было процесса, не может быть перенесено с более холодного тела на более теплое, без того, чтобы не осталось других изменений ( компенсации ). Только пользуясь этим более широким толкованием положения Клаузиуса, можно, исходя из него, делать заключение относительно каких угодно природных процессов .  [c.89]

    Классическая термодинамика, развитая во,второй половине XIX в., строилась именно на приведенных выше формулировках второго закона. Основной недостаток этих формулировок заключается в том, что они представляются несколько расплывчатыми, как бы неосязаемыми, не вскрывают физический смысл второго начала и пределы его приложимости. Остается неясным, каким образом можно придать второму началу математический характер, как им на деле воспользоваться для анализа явлений, для нахождения новых закономерностей и связи между различными физическими величинами. [c.90]

    Максвелл, Больцман и Гиббс установили связь второго начала термодинамики с молекулярно-кинетическими представлениями, что привело к статистическому толкованию второго закона. Именно статистический подход позволил вскрыть специфическую особенность тепловых явлений, определить их качественное своеобразие и характеризовать их необратимость. При таком подходе стали совершенно ясными пределы применимости второго закона термодинамики. [c.91]

    Теоретически закон Гей-Люссака—Джоуля можно вывести с помощью второго закона термодинамики, но установлен он был опытным путем. Опыты Л. Гей-Люссака (1809) и Дж. Джоуля (1844) заключались в следующем. Система из двух баллонов, соединенных трубкой с краном, помещалась в сосуд с водой, температура которой измерялась термометром. В одном из баллонов находился газ при некотором давлении рг, другой баллон был пустой (р2 = 0). При открывании крана первый баллон охлаждался, второй нагревался, но после установления равновесия температура воды в сосуде оставалась такой же, как до начала опыта. Следовательно, теплота расширения равнялась нулю <Э = 0. Так как объем системы из двух сосудов оставался постоянным, то и работа А = 0. Следовательно, в соответствии с первым законом термодинамики АС/ = 0, т. е. внутренняя энергия идеального газа не изменяется при изменении его объема. [c.27]

    Тщательный анализ показал, что первое и второе начало термодинамики не позволяют решить этой задачи. Необходимо привлечь какое-то дополнительное условие, не вытекающее из двух основных законов термодинамики. В. Нернст предположил, что такое дополнительное условие состоит в том, что две кривые АН == ф (Т) и АО == г з (Т) не только имеют общую точку при Т = О, но имеют в этой точке и общую касательную  [c.102]

    Все изложенное, как уже было подчеркнуто, логически не вытекает из первого и второго начала термодинамики, а требует некоторого дополнительного постулата. Таким является уравнение (III.5.2) [или уравнения (III.5.7) и (III.5.8)]. Этот постулат получил название теплового закона (или тепловой теоремы) Нернста. [c.103]

    Основываясь на подобных аксиомах, можно найти условия, при которых возможны или невозможны другие процессы. При таком эмпирическом подходе оказывается возможным решение ряда задач, связанных с расчетом равновесий без каких-либо гипотез о строении вещества или механизме реакций. В действительности понятия и аксиомы второго закона опираются на молекулярную теорию. Однако изложенные выше основные положения второго закона термодинамики сложились в середине прошлого века, когда еще не получила развития молекулярная теория. Именно это обстоятельство и вынуждало к аксиоматическому построению термодинамики. В настоящее время при изучении этой дисциплины целесообразно с самого начала представлять себе молекулярный смысл ее понятий и основных аксиом. [c.29]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    При недостаточно критическом применении второго закона термодинамики из него можно сделать принципиально неправильный вывод. Согласно второму закону, в изолированной системе во всех обратимых- процессах энтропия не претерпевает изменений, а в необратимых только возрастает. Поэтому, если течение необратимых процессов не исключено, то энтропия такой системы может только возрастать, и это возрастание должно сопровождаться постепенным выравниванием температуры различных частей системы. Если рассматривать вселенную в целом как систему изолированную (не вступающую ни в какое-взаимодействие с другой средой), то можно заключить, что возрастание энтропии должно привести в конце концов к полному выравниванию температуры во всех частях вселеггной, что означало бы, с этой точки зрения, невозможность протекания каких-нибудь процессов и, следовательно, тепловую смерть вселенной . Такой вывод, впервые четко сформулированный в середине XIX в. Клаузиусом, является идеалистическим, так как признание конца существования (т. е. смерти ) вселенной требует признаиид и ее возникновения. Статистическая природа второго начала термодинамики не позволяет считать его универсально применимым к системам любых размеров. Нельзя утверждать также, что второй закон применим к вселенной в целом, так как в ней возможно протекание энергетических процессов (как, например, различные ядерные превращения), на которые термодинамический метод исследования но может механически переноситься. В определенных видах космических процессов происходит возрастание разности температур, а не выравнивание их. [c.220]

    Согласно второму началу термодинамики все самопроизвольные необратимые процессы в изолированных системах сопровождаются ростом энтропии. Это свойство эт 1тропии хорошо объяснил создатель статистической физики Л. Больцман, показавший, что второе начало термодинамики представляет собой следствие естественного перехода всякой изолированной системы от состояний маловероятных к состояниям более вероятным, т. е. оно представляет собой статистический закон, обладающий большой точностью только для большого числа частиц (макросистем). Движение одной изолированной молекулы можно хорошо описать. Труднее описать систему из двух и более взаимодействующих частиц. Системы из большого числа частиц хорошо описываются при помощи теории вероятности. [c.148]

    Современная наука начисто отвергает ложную концепцию о тепловой смер-ти> мира. Накопленный человечеством опыт убедительно доказывает, что мир бес-конечен и развитие его происходило вечно и вечно будет продолжаться. Основа ошибки Клаузиуса заключается в том, что второе начало термодинамики в отличие от первого начала ие является абсолютным законом природы, а имеет отно- сительный характер, что было показано в работах Больцмана (1895) и Смолухов-. ского (1914). Нельзя рассматривать Вселенную как замкнутую изолированную ко-, вечную систему, а потому к ней неприменимо второе начало термодинамики. Естественно считать, что при иных условиях существования материи, сильно отличающихся от тех, которые имеют место на Земле, процессы могут протекать и в обратном направлении, т. е. с убыванием энтропии. Об этом свидетельствуют наблюдения астрономов и астрофизиков за рождением новых звезд, новых миров. [c.74]

    Второе начало термодинамики является всеобщим законом природы, значение которого столь же велико, как и значение закона сохранения энергии. В своих главных выводах второй закон никогда не расходился с опытом. Однако если этот закон подвергнуть строгой критике, то придется признать, что он в своей обычной формулировке не может быть универсально справедли-126- [c.126]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Начало развития термодинамики неравновесных процессов (или просто неравновесной термодинамики) следует отсчитывать от Рудольфа Клаузиуса, которому принадлежит по существу основное в этой области понятие некомпенсированной теплоты (1850 г.). Однако первым все же применил термодинамические соотношения к изучению неравновесных процессов Вильям Томсон (Кельвин) в 1854 г. В более позднее время развитию неравновесной термодинамике существенно способствовал Де-Донде. Его главная идея состояла в том, что можно идти дальше обычного утверждения неравенства второго закона и дать количественное определение возникновения энтропии . В 1922 г. Де-Донде связал также некомпенсированную теплоту Клаузиуса и химическое сродство. В 1931 г. Онзагер формулировал свои знаменитые соотношения взаимности , являющиеся основой изучения связей различных неравновесных процессов в так называемой линейной области. Дальнейшее развитие неравновесной термодинамики и обоснование ее формализма связано с именами Пригожина, Глансдорфа, Казимира и других. Так, в работах И. Пригожина методы неравновесной термодинамики распространены на область, где связь между потоками и вызывающими их силами уже не является линейной. [c.308]


Смотреть страницы где упоминается термин Второй закон начало термодинамики: [c.136]    [c.48]    [c.351]    [c.127]    [c.35]   
Смотреть главы в:

Общая и неорганическая химия Часть 3 -> Второй закон начало термодинамики


Краткий курс физической химии Издание 3 (1963) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики

Второй закон второе начало термодинамики

Второй закон второе начало термодинамики

Второй закон начало термодинамики аналитическое выражение

Второй закон начало термодинамики формулировка

Закон второй

Закон сохранения материи — 12. Обменные процессы в организмах — 13. Закон сохранения энергии — 14. Первое начало термодинамики— 16. Второе начало термодинамики. Энтропия—18. Третье начало термодинамики — 20. Критика тепловой смерти вселенной — 21. Принципы термохимии — 24. Свободная энергия — 28. Второе начало термодинамики и организмы

Закон термодинамики

Закон термодинамики второй

Начала тел

Начала термодинамики второе

Термодинамики второй



© 2024 chem21.info Реклама на сайте