Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры альдегид

    Сложные эфиры Альдегиды Жирные кислоты Нитрованные мае- —N02 ла [c.201]

    Прокаленный хлорид кальция. Хлорид кальция применяется довольно часто ввиду своей доступно сти. Однако он обладает рядом существенных недо-статков осушает медленно и не до конца, реагирует со спиртами, фенолами, аминами, амидами и нитрилами кислот, сложными эфирами, альдегидами и другими соединениями, а поэтому не может применяться для их осушки. [c.175]


    Синтетические душистые вещества —летучие органические соединения, преимущественно сложные эфиры, альдегиды или [c.12]

    Присоединение спиртов, аминов, сложных эфиров, альдегидов и т. д. [c.207]

    Галогенозамещенные карбоновые кислоты, сложные эфиры, альдегиды и кетоны (см. Галогенозамещенные карбонильные соединения) Галогенозамещенные простые эфиры и ацетали [c.420]

    Ненасыщенные кислоты, сложные эфиры, альдегиды, кетоны (см. Ненасыщенные карбонильные соединения) Ненасыщенные спирты и фенолы [c.435]

    Н, Л — ДЛЯ разделения сложных эфиров, альдегидов, кетонов К — для отделения олефинов от ароматических углеводородов, спиртов, эфиров Ь = = НЖФ универсального назначения N — для разделения терпеновых спиртов, фенолов, кислот Для разделения смеси СО , Н3О, Н З, [c.104]

    Получение из сложных эфиров, альдегидов й кетонов с помощью металлоорганических соединений мы рассмотрим при изучении соответствующих разделов органической химии. [c.99]

    Типичные примеры реакции Дильса—Альдера описаны ниже. Легко заметить, что в результате реакции всегда образуется новая двойная связь. При синтезе углеводородов в диенофиле отсутствует электроноакцепторная группа. Однако в более общих случаях, т. е. при образовании аддуктов ангидридов, карбоновых кислот, сложных эфиров, альдегидов, хинонов и т. п., в диенофиле имеется электроноакцепторная группа. [c.144]

    Синтезы на основе оксидов углерода и водорода дают возможность получать широкую гамму продуктов углеводороды, спирты, карбоновые кислоты, сложные эфиры, альдегиды, кетоны. Потребность народного хозяйства в этих продуктах исчисляется сотнями тысяч и миллионами тонн в год. В связи с ограниченностью мировых запасов нефти эти синтезы в последние годы приобретают все более важное значение. [c.105]

    Расщепление по связям О—С при действии щелочных металлов, их гидроксидов или алкоголятов, карбоновых и неорг. к-т, их ангидридов, а в присут. сильных к-т-при действии простых и сложных эфиров, альдегидов, кетоиов. [c.98]

    Впервые изучены реакции гомолитического расщепления гипогалогенитов бензиловых, вторичных спиртов и диолов. Показано, что в зависимости от структуры, они превращаются в линейные или циклические сложные эфиры, альдегиды, кетоны, дикетоны и спирты. [c.4]

    В процессе получения бутанола через альдоль и кротоновый альдегид необходим быстрый и оперативный контроль образующихся нродуктов. Эти продукты представляют собой смеси, содержащие простые и сложные эфиры, альдегиды, кетоны, спирты и др. [c.171]


    Обобщая данные о сорбируемости на АУ низкомолекулярных органических соединений, можно сделать вывод, что менее других сорбируются структурно простые вещества в ионной форме, лучше других — в молекулярной форме. Сорбируемость органических веществ возрастает в ряду гликоли < спирты < кетоны < < сложные эфиры — альдегиды < недиссоциированные кислоты < ароматические соединения. [c.515]

    Многочисленные соединения каждой группы отличаются друг от друга видом циклизации (соединения с открытой цепью, моно-, бициклические и т. д.), числом и положением двойных связей, центрами асимметрии и природой и числом функциональных групп. Поэтому целесообразно осуществить дополнительную разбивку внутри терпеновых групп по функциональным группам, расположив их в ряд с увеличивающейся полярностью углеводороды, сложные эфиры, альдегиды, кетоны, спирты, кислоты. [c.186]

    Синтезы на основе оксидов углерода и водорода чрезвычайно интересны не только с теоретической, но и с практической точки зрения, так как дают возможность на основе простейших газов (СО, СОг и Нг) получать широкую гамму продуктов углеводороды— от метана до твердых высокоплавких парафинов, спирты — от метанола до эйкозанола и выше, карбоновые кислоты, сложные эфиры, альдегиды, кетоны. Потребность народного хозяйства в этих продуктах исчисляется сотнями тысяч и миллионами тонн в год. В связи с ограниченностью мировых запасов нефти эти синтезы в последние годы приобретают все более важное значение. [c.263]

    Установлено, что в синтетическом метаноле-сырце содержится более 50 органических соединений. Это — простые и сложные эфиры, альдегиды, кетоны, формали, ацетали, высшие спирты, карбоновые кислоты, амины. Общее содержание их в пересчете на органические соединения колеблется от 0,3 до 5,2% (масс.) в зависимости от качества сырья, применяемого катализатора и условий процесса (табл. 3.8). [c.96]

    Например, продуктами гидроформилирования пропена, кроме С -альдегидов и спиртов (н- и зо-бутилового), являются С5-СОЛИ или эфиры муравьиной кислоты, Св-сложные эфиры, альдегиды или спирты, Св-простые эфиры, Сд- эфироальдегиды и эфироспирты и, возможно, (З з-ацетали, образованные путем следующих реакций  [c.195]

    Диоктилфталат jHi ( OO gHiijj. Мол. вес 390,56, плотн. 0,982 при 20° С, т. плавл. 25° С, т. кип. 386° С, диэлектрическая проницаемость 5,1, показатель преломления 1,484. Максимальная рабочая температура колонки 150° С Рекомендуемый растворитель — дихлорметан. Универсальная жидкая фаза. Применяется для разделения углеводородов, спиртов, фенолов, сложных эфиров, альдегидов, жирных кислот.< [c.282]

    Через несколько минут начинается реакция, жидкость кипит, и выделяются белые пары, содержащие азотный и уксусный сложные эфиры, альдегид, угольную кислоту и синильную кислоту. По мере протекания реакции цвет паров изменяется от белого до красьых паров/ вуокиси азота. [c.82]

    В колоннах, особенно в бражной, наряду с процессом ректификации идут сложные химические процессы новообразования сложных эфиров, альдегидов, ацеталей, органических кислот и других летучих соединений. Снижение температуры и сокращение времени пребывания бражки в колонне уменьщают скорость новообразований и позволяют получить бражной дистиллят со значительно меньшим содержанием примесей спирта. [c.343]

    Так, для разделения углеводородов и их производных, молекулы которых обладают малой полярностью (например, гало,генпро-изводных углеводородов), вполне пригодны парафиновые и силиконовые масла и трикрезилфосфат напротив, диалкилфталаты рекомендуется применять для разделения кислородсодержащих соединений (простых н сложных эфиров, альдегидов, кетонов и др.). Смеси, содержащие воду, хорошо разделяются иа полигликолях. [c.98]

    Таблица разбита па разделы разде-т А посвящен углеводородам и замещенным углеподородам Б — стеринам В — кислотам Г—спиртам Д — сложным эфирам -—альдегидам и кетонам (включая углеводы) Ж — прсктым эфирам 3 другим соединениям. [c.499]

    Для углеводородов, перфторсоединений, галогеносодсржащих соединений, сложных эфиров, альдегидов, кетонов и нитросоединений (группа I) А1= 0,0287 для спиртов и кислот (фуппа II) А2 = 0,0181 для нитрилов (группа 111) = 0,0229. Напомним, что АГ- выражается в Джо лях, AI, - в А , и тогда с указанными коэффициентами Aj величина Ур выражается в динУсм. [c.356]

    Многие A. . играют важную роль в биол. процессах. К таким соед. относятся, в частности, жиры, продукты их метаболизма, ми. аминокислоты, входящие в состав белков, углеводы. В эфирных маслах мн. растений содержатся сложные эфиры, альдегиды, спирты и другие A. . [c.82]

    БАЛЬЗАМЫ (от греч. balsamon-ароматическая смола), р-ры прир. смол в сопутствующих им эфирных маслах. Б. накапливаются в растениях, гл. обр. в особых межклеточных вместилищах или ходах коры. Добывают Б, как правило, подсочкой (нанесение спец. надрезов на стволы деревьев в период вегетации). В состав Б обычно входят ароматичные соед. (ванилин, коричная и бензойная к-ты, их сложные эфиры, альдегиды, кетоны, спирты). Б,-вязкие жидкости на воздухе постепенно твердеют из-за испарения эфирного масла и окисления обладают горьким острым вкусом и кислой р-цией, практически нерастворимы в воде, [c.239]


    Обобщая данные о сорбируемости на активированных углях низкомолекулярных органических соединений, можно сделать вывод, что менее других сорбируются структурно-простые вещества в ионной форме, лучше - в молекулярной. Сорбируемость органических веществ возрастает в ряду Гликоли < Спирты < Кетоны < Сложные эфиры - Альдегиды < Недиссоции-рованные кислоты < Ароматические соединения. [c.73]

    Геннлцианиды важны не только как промежуточные соединения в синтезе тиенилуксусных кислот (имеющих большое значение для получения синтетических аналогов пенициллина и родственных фармацевтических препаратов), но также как системы с активной метиленовой группой, способные легко конденсироваться со сложными эфирами, альдегидами, карбонатами и алкилгалогенидами. Циклизация о-бис(цианометил) производных используется как эффективный метод аннелирования [142, 146, 147]. [c.276]

    Перенос протона на атом углерода и обратно. На лимитирующей стадии протон может переноситься от общей кислоты на карбанион, олефин или ароматическое соединение. Некоторые из этих реакций приведены в табл. 5.1. Поскольку общий основной и общий кислотный катализ являются взаимообрат-иыми процессами, каждая из вышеупомянутых реакций в обратном направлении катализируется общими основаниями. В качестве примера можно привести депротонирование кетонов, сложных эфиров, альдегидов и нитросоединений. [c.125]

    Для ориентировочной оценки времени удерживания веществ различной природы на газожццкостной хроматограмме может служить сравнение природы жццкой фазы и анализируемых молекул. На неполярной жцдкой фазе неполярные молекулы движутся медленнее, чем полярные, и пики их появляются позднее. Наоборот, с увеличением полярности жидкой фазы полярные вещества удерживаются сильнее неполярных. Так, для разделения углеводородов и их галогенопроизводных наиболее пригодны парафины, силиконовые масла или трикрезилфосфат. Для разделения кислородосодержащих щ)оизводных (простых и сложных эфиров, альдегидов и кетонов) более подходит диалкилфталат. Чувствительность метода газожидкостной хроматографии достигает 0,01—0,001% паров вещества в токе N3. [c.100]

    Из схемы 9.1 очевидно, что фундаментом всей органической химии являются углеводороды. От алканов происходят все остальные классы углеводородов. Из углеводородов в результате химических реакций замещения Н-атома С-Н-связи и присоединения реагентов по л-связям возникают основные классы функциональных производных углеводородов — галогенопроизводные, сульфопроиз-водные, нитросоединения, спирты, простые и сложные эфиры, альдегиды, кегоны и карбоновые кислоты. Дальнейшее химическое преобразование (химический дизайн) этих производных за счет замещения или химического видоизменения функциональных групп создает все труднообозримое многообразие полифунк-ционапьных органических соединений, в том числе аминокислоты, пептиды, и белки, жиры и углеводы, гетероциклы различной сложности, витамины, гормоны, нуклеотиды и нуклеиновые кислоты, ферменты. [c.317]

    Металлический натрий используется для высушивания парафиновых, циклопарафиновых, этиленовых и ароматических углеводородов, простых эфиров и третичных аминов. Предварительно ббльшую часть воды удаляют из жидкости одним из указанных выше осушителей. Наиболее удобно применять натрий в виде тонкой проволоки, которую выдавливают прямо в жидкость при помощи специального пресса, или в виде тонкой ленты (таким путем создается большая поверхность для соприкосновения с жидкостью). Нельзя сушить металлическим натрием галогенопроизводные углеводородов, которые реагируют с натрием в ряде случаев (например, СНС1з) со взрывом. Нельзя также применять натрий для высушивания спиртов, кислот, сложных эфиров, альдегидов, кетонов и некоторых аминов. [c.19]

    При понижении температуры в системе охлаждения двигателя количество образующихся углеродистых отложений возрастает в несколько раз. На этом режиме (рис. 22) механизм образования отложений отличается от рассмотренного выше для двигателей, работающих на высокотемпературном режиме. На такте сжатия топливо-воздушная смесь подвергается интенсивному окислению с образованием перекисей углеводородов, сложных эфиров, альдегидов, кислот и т. д. Эти газообразные мономеры проникают через кольцевой пояс поршней в картер двигателя и загрязняют масло. Пока они удерживаются в растворе их взаимодействие очень незначительно. Однако масло быстро насыщается мономерами, и они, конденсируясь, образуют вторую жидкую фазу продуктов окисления. Эти продукты имеют низкую относительную молекулярную массу (60—300), содержат гидроксильные, карбонильные и карбоксильные группы, а также нитро- н нитроэфирные группы. [c.54]

    Непосредственное окисление одноатомных первичных спиртов в соответственные кислоты лучше всего производится при действии щелочного раствора перманганата Худшие результаты пол 4чаются при применении хромового ангидрида с серной кислотой, так как при этом в качестве побочных продуктов также получаются сложные эфиры, альдегиды и ацетали. [c.125]

    В 1940 г. Венцелем был разработан процесс каталитического гидрирования оксида углерода в стационарном слое плавленого железного катализатора — синол-процесс. Синтез проводили при относительно низких температурах (180— 200 °С) и 0,5—2,5 МПа. В жидких продуктах синтеза кроме спиртов имелось-2—7°/о (масс.) других кислородсодержащих соединений (сложные эфиры, альдегиды, кетоны и карбоновые кислоты). Выход первичных алифатических спиртов достигал 60—70% от суммы жидких продуктов. [c.307]

    Метиловыи спирт Сложные эфиры Альдегиды Кетопы Смола отстойная растворимая Другие соединения Водт (по разности) [c.51]


Смотреть страницы где упоминается термин Сложные эфиры альдегид: [c.504]    [c.111]    [c.31]    [c.190]    [c.220]    [c.331]    [c.303]    [c.417]    [c.242]    [c.678]    [c.396]    [c.176]    [c.176]    [c.161]   
Синтезы органических препаратов Сб.3 (1952) -- [ c.446 ]

Синтезы органических препаратов Сборник 3 (1952) -- [ c.446 ]




ПОИСК







© 2025 chem21.info Реклама на сайте