Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент зависимость от скорости роста

Рис. 7.11. Зависимость скорости роста трещины для алюминиевого сплава 707 от коэффициента интенсивности напряжения К [47] Рис. 7.11. <a href="/info/73000">Зависимость скорости роста</a> трещины для <a href="/info/20538">алюминиевого сплава</a> 707 от <a href="/info/71530">коэффициента интенсивности</a> напряжения К [47]

Рис. 47. Зависимость скорости роста трещины V от коэффициента интенсивности напряжений К при различных температурах (цифры у кривых) для силава Т1—2,. чп. Испытания в водороде при 0,09 МПа [207]. Рис. 47. <a href="/info/73000">Зависимость скорости роста</a> трещины V от <a href="/info/1573231">коэффициента интенсивности напряжений</a> К при <a href="/info/133412">различных температурах</a> (цифры у кривых) для силава Т1—2,. чп. Испытания в водороде при 0,09 МПа [207].
    Выражая значения и 81 через коэффициенты интенсивности упруго-пластических напряжений К и К [167] и подставляя их в уравнение (5.50), получим функциональную зависимость скорости роста трещины от КИН  [c.349]

Рис. 2. Обобщенная диаграмма зависимости скорости роста трещины V от коэффициента интенсивности напряжений К Рис. 2. <a href="/info/336585">Обобщенная диаграмма</a> <a href="/info/73000">зависимости скорости роста</a> трещины V от <a href="/info/71530">коэффициента интенсивности</a> напряжений К
    Рис, 16. Образец ДКБ, используемый для определения зависимости скорости роста трещины (к) кри КР от коэффициента интенсивности напряжений ( 1) [44а]  [c.171]

    На рис. 56 показано влияние электродного потенциала на скорость роста коррозионной трещины тройного сплава на чистой основе. (Влияние коэффициента интенсивности напряжений и концентрации на скорость роста коррозионной трещины этого сплава было уже представлено на рис. 39, 51 и 52.) Данные рис. 56 относятся только к области плато — области независимости скорости V от напряжений. Сначала рассматривается зависимость скорости роста трещины от потенциала в нейтральном растворе 5 М К1. При разомкнутой цепи потенциал этого сплава около —1100 мВ по отношению к н. к. э. при соответствующей скорости роста коррозионной трещины, равной 2-10 см/с. Если наложить более электроотрицательный потенциал, то скорость [c.205]

    Почему зависимость скорости роста трещины от коэффициента интенсивности напряжений имеет форму, схематически представленную на рис. 131 Реальные кривые V—К могут быть намного более сложными <см. рис. 55). [c.283]

    Температура. Зависимость скорости роста коррозионной трещины от температуры в соответствии с уравнением (19) должна определяться главным образом зависимостью коэффициента диффузии О галоидных ионов от температуры. Энергия активации, определенная как 16,81 кДж/моль для области И (см. рис. 63), находится в хорошем согласии с процессом активации ионного массопереноса [225]. Значительно отличающееся влияние температуры в области кривой, соответствующей медленному росту трещины (см. рис. 64 и 65), по-видимому, показывает, что в этом случае транспорт галоидных ионов через жидкость не является контролирующей стадией. [c.292]


    Представление зависимости скорости роста трещины от текущего значения коэффициента интенсивности напряжений вначале было использовано для анализа субкритического роста трещины в стекле [86], сталях [86], латуни [87], а затем распространено на титановые сплавы [31, 88]. На кривой зависимости [c.313]

Рис. 23. Зависимость скорости роста трещины от коэффициента интенсивности напряжений для трех термообработок (S , МА. DA) снлава Ti—8 Ai—1 Mo—1 V, испытанного в растворах [104] Рис. 23. <a href="/info/73000">Зависимость скорости роста</a> трещины от <a href="/info/1573231">коэффициента интенсивности напряжений</a> для трех термообработок (S , МА. DA) снлава Ti—8 Ai—1 Mo—1 V, испытанного в растворах [104]
Рис. 28. Зависимости скорости роста трещины [103, 104] от коэффициента интенсивности напряжений (К) для сплава Ti—8 А1—1 Мо—1 V (образец ДКБ, МА), испытанного в растворе 10 М НС1 (без наложения потенциала) при различных температурах, С Рис. 28. <a href="/info/73000">Зависимости скорости роста</a> трещины [103, 104] от <a href="/info/1573231">коэффициента интенсивности напряжений</a> (К) для сплава Ti—8 А1—1 Мо—1 V (образец ДКБ, МА), испытанного в растворе 10 М НС1 (без <a href="/info/71646">наложения потенциала</a>) при различных температурах, С
Рис. 47. Зависимость скорости роста трещины о [1031 от текущего коэффициента интенсивности напряжений К для сплава Т — —8 А]—I Мо—1 V (образец с односторонним надрезом, МА, 24 °С), испытанного в различных галоидзамещенных углеводородах, высушенных (/) или насыщенных водой (2) Рис. 47. <a href="/info/73000">Зависимость скорости роста</a> трещины о [1031 от текущего <a href="/info/1573231">коэффициента интенсивности напряжений</a> К для сплава Т — —8 А]—I Мо—1 V (образец с односторонним надрезом, МА, 24 °С), испытанного в различных <a href="/info/35879">галоидзамещенных углеводородах</a>, высушенных (/) или насыщенных водой (2)
Рис. 75. Зависимость скорости роста трещины от коэффициента интенсивности напряжений для сплава Ti — 13V — ПСг —ЗА1 (образец с односторонним надрезом, 24 °С), состаренного при 590 °С за различное время (цифры у кривых — время, ч) и при 400 °С за 16 ч. Испытания проведены в растворе 0.6 М K I при ф=—500 мВ. Указываются структуры фаз и отношение [1051- Рис. 75. <a href="/info/73000">Зависимость скорости роста</a> трещины от <a href="/info/1573231">коэффициента интенсивности напряжений</a> для сплава Ti — 13V — ПСг —ЗА1 (образец с односторонним надрезом, 24 °С), состаренного при 590 °С за <a href="/info/1446394">различное время</a> (цифры у кривых — время, ч) и при 400 °С за 16 ч. Испытания проведены в растворе 0.6 М K I при ф=—500 мВ. Указываются структуры фаз и отношение [1051-
Рис. 77. Зависимость скорости роста трещины V от коэффициента интенсивности напряжений К для трех термообработок силава Ti — 8Мп яри испытании в растворе 0,6 М КС1 при —500 мВ (образец с односторонним надрезом, 23 °С) Рис. 77. <a href="/info/73000">Зависимость скорости роста</a> трещины V от <a href="/info/1573231">коэффициента интенсивности напряжений</a> К для трех термообработок силава Ti — 8Мп яри испытании в растворе 0,6 М КС1 при —500 мВ (образец с односторонним надрезом, 23 °С)
Рис. 78. Зависимость скорости роста трещины и от коэффициента интенсивности напрял<ений [19, 105 ири испытании в растворе 0,6 М КС1 ири —500 мВ силава Ti — 11,5Мо — 6Zr — 4,5Sn (образец с односторонним надрезом, 24 СЬ состаренного в режиме Рис. 78. <a href="/info/73000">Зависимость скорости роста</a> трещины и от <a href="/info/71530">коэффициента интенсивности</a> напрял<ений [19, 105 ири испытании в растворе 0,6 М КС1 ири —500 мВ силава Ti — 11,5Мо — 6Zr — 4,5Sn (образец с односторонним надрезом, 24 СЬ состаренного в режиме
Рис. 79. Зависимость скорости роста трещины V от коэффициента интенсивности напряжений [105 при испытании в растворе 0,6 М K I сплава Ti—И,5Мо — Рис. 79. <a href="/info/73000">Зависимость скорости роста</a> трещины V от <a href="/info/1573231">коэффициента интенсивности напряжений</a> [105 при испытании в растворе 0,6 М K I сплава Ti—И,5Мо —
    Установлено, что зависимость скорости роста усталостной трещины от величины коэффициента интенсивности напряжений и в воздухе, [c.88]

    Изменение давления воздуха не влияет на степенную зависимость скорости роста трещины /э / /Л/ = Однако при переходе от нормального давления к вакууму для стали, подверженной отпуску при 180°С, коэффициент С уменьшается с 9,86 10" до 1,34 10 , а показатель п увеличивается с 4,62 до 5,88. С увеличением нагрузки значения скорости развития трещины в воздухе и в вакууме сближаются. [c.100]

    Чем меньше коэффициент адсорбции, тем при меньших давлениях можно ожидать протекания реакции по первому порядку. Общий вид зависимости скорости роста от давления реагирующего газа приведен на рис. 2. [c.34]


    Систематических исследований зависимости скорости роста от давления в автоклаве в период роста кристаллов до настоящего времени не проводилось. Тем не менее имеющиеся отдельные экспериментальные и литературные данные позволяют сделать оценку влияния этого фактора. Несомненно, что повышение давления при сохранении неизменными остальных условий кристаллизации увеличивает скорость роста кварца. По-видимому, повышение скорости роста кристаллов с увеличением давления, а следовательно, и степени заполнения автоклава следует объяснить увеличением растворимости кварца и образующегося одновременно силиката натрия вследствие повышения плотности растворителя при высоких давлениях. В настоящее время мы не располагаем еще точным аналитическим выражением, связывающим изменение плотности раствора, давления и растворимости кварца, однако линейная зависимость между температурой и растворимостью силикатов натрия при постоянном давлении дает основание предполагать, что такая зависимость должна существовать и между давлением, плотностью раствора и растворимостью силикатов. На линейный характер зависимости скорости роста от коэффициента заполнения указывает Р. Лодиз [17] (см. рис. 7). Он отмечает, что такой характер зависимость имеет при низких степенях заполнения как для содовых, так и для щелочных сред. Если же степень заполнения в растворах гидроксида натрия превышает 82%.то, начиная с температуры 380 °С (давление порядка 200 МПа), эта зависимость отклоняется от линейного вида. При этом небольшое увеличение степени заполнения сосуда приводит к существенному повышению скорости роста. Р. Лодиз также указывал, что постановка опытов в растворах ЫаОН при высоких степенях заполнения позволяет выращивать однородные кристаллы с высокими скоростями роста без признаков вырождения растущей поверхности. [c.40]

    Как видно из этой зависимости, наибольшее воздействие на скорость роста оказывает величина переохлаждения. С увеличением величины переохлаждения (АТ = То—Т) скорость увеличивается, однако лишь до некоторого определенного момента. Поскольку коэффициент диффузии экспоненциально уменьшается с возрастанием величины 1/7, где Т — температура раздела фаз, влияние этого параметра с некоторого момента становится преобладающим и на кривой зависимости скорости роста от степени переохлаждения возникает максимум. [c.354]

    Учет влияния примесей и состава раствора на коэффициент диффузии [333, 334] не приводит к существенным изменениям. Различные точки зрения на природу и строение пограничного диффузионного слоя [330, 335—337] также не изменяют принципиального положения о характере зависимости скорости роста и растворения кристаллов от их размера. [c.88]

    Экспериментальные данные и расчетные зависимости скорости роста трещин в различных зонах сварного соединения показаны на рис. 70. В табл. 32 приведены коэффициенты Сия для исследуемого сварного соединения. [c.135]

    Знаменатель формулы (26) содержит функциональную зависимость скорости роста трещины от коэффициента интенсивности напряжений, являющегося,в свою очередь, функцией длины трещины. Такая зависимость определяется реальной кинетической диаграммой разрушения, которая должна быть построена для условий, приближенных к эксплуатационным, Определение кинетической диаграммы разрушения и характеристик трещиностойкости исследуемого металла может быть выполнено по методикам [72-75]. Пример решения задачи оценки остаточной работоспособности сосуда давления с трещинами коррозии под напряжением показан в работе [2J. [c.46]

    Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стаццаргньм образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят при заданной температуре среды, накладывая, по необходимости, на Образец анодную или катодную поляризацию. По полученнь м данным рассчиты- [c.132]

    Результаты испытаний на скорость распространения трещин обычно пред-Л ставляют в виде кривых зависимости скорости роста трещины v от коэффициента интенсивности напряжений К (рис. 2). Существование трех областей (/—111) на кривой соответствует трем стадиям процесса. Впервые это было отмечено Видерхорном [4]. Кри- тические значения К для быстрого разрушения (обозначаемые Kq, Kix или при определенных условиях Ки) могут быть таковы, что получить полную кривую с тремя характерными областями не удается, но отдельные части такой кривой наблюдаются для многих материалов. [c.50]

    Рис, 46, Зависимость скорости роста трещины гг от коэффициента интенсивности напряжений /С ири различных температурах (цифры у кривых) для алюминиевого силава 7039-161, Плоскость растрескивания иериендикулярна толщине образца. Исиытаиия ири разомкнутой цеии в водном растворе 5М К1 [2] [c.123]

    В дополнение к сказанному можно привести еще один пример.. При испытаниях на КР в некоторых средах и прн э1 жпозиции в газообразном водороде кривые зависимости скорости роста трещины V от коэффициента интенсивности напряжений К (см. рис. 2) имеют довольно большое общее сходство, что проил.яюстрнро- [c.124]

    Такие сплавы имеются в распоряжении или находятся в стадии разработки, как будет отмечейо ниже (см. Разработка новых сплавов ). Согласно данным последних исследований в этом направлении характеристики сопротивления КР, разрабатываемых в настоящее время сплавов, должны включать не только пороговый уровень напряжений, полученный на гладких образцах, но и кривые, выражающие зависимость скорости роста трещины от коэффициента интенсивности напряжений. [c.256]

Рис. 116. Влияние искусственного старения прн 160 °С на кривые, выражающие зависимость скорости роста коррозионной трещины и от коэффициента интенсивности К на плите сплава 7178-1651 (толщнна плнты 25 мм, ориентация трещины ВД, 5 М водный раствор Na l, температура 23 С) [44а] цифры у кривых — продолжительность старения прн 160 С, ч Рис. 116. <a href="/info/71734">Влияние искусственного старения</a> прн 160 °С на кривые, выражающие <a href="/info/73000">зависимость скорости роста</a> <a href="/info/489602">коррозионной трещины</a> и от <a href="/info/71530">коэффициента интенсивности</a> К на <a href="/info/1423897">плите сплава</a> 7178-1651 (толщнна плнты 25 мм, <a href="/info/301933">ориентация трещины</a> ВД, 5 М <a href="/info/6274">водный раствор</a> Na l, температура 23 С) [44а] цифры у кривых — продолжительность старения прн 160 С, ч
Рис. 1.31. Области ( —III) на кри-ВОЙ зависимости скорости роста трещнны при КР от коэффициента интенсипностн напряжений в вершине трещины Рис. 1.31. Области ( —III) на кри-ВОЙ <a href="/info/73000">зависимости скорости роста</a> трещнны при КР от коэффициента интенсипностн напряжений в вершине трещины
    Рис. п. Зависимость скорости роста трещнны ("и) при КР от коэффициента интенсивности напряжений для трех (8С, МА, ПА) термообработок сплава Т — 8 % А1 1% Мо —1% V. Испытания ДКБ проведены при 24 °С в среде  [c.321]

Рис. 12. Зависимость скорости роста трещины к при КР от коэффициента интенсивности напряжений для сплавов а Т1—8 А1—1 Мо—1 V (испытания в растворах хлоридов [81]) б —Т1—6 А1—4 V (стандартный отжиг, 24 °С, ДКБ. испытания в растворах фторидов без наложения потенциала [105]) Рис. 12. <a href="/info/73000">Зависимость скорости роста</a> трещины к при КР от <a href="/info/1573231">коэффициента интенсивности напряжений</a> для сплавов а Т1—8 А1—1 Мо—1 V (испытания в <a href="/info/149635">растворах хлоридов</a> [81]) б —Т1—6 А1—4 V (стандартный отжиг, 24 °С, ДКБ. испытания в <a href="/info/772954">растворах фторидов</a> без наложения потенциала [105])
Рис. 22. Зависимость скорости роста трещииы и от коэффициента интенсивности напряжений для сплава Т —б А1—4 V (образец ДКБ, МА), испытанного а растворе 5 М К (24 °С) прн различных потенциалах [104], мВ Рис. 22. <a href="/info/73000">Зависимость скорости роста</a> трещииы и от <a href="/info/1573231">коэффициента интенсивности напряжений</a> для сплава Т —б А1—4 V (образец ДКБ, МА), испытанного а растворе 5 М К (24 °С) прн различных потенциалах [104], мВ
Рис. 27. Зависимость скорости роста трещины [8Ц от коэффициента интенсивности напряжений для сплава Ti—8 Al —1 Mo—1 V (изгибиый образец с надрезом) в растворе 3,5% Na l при различных температурах, С Рис. 27. <a href="/info/73000">Зависимость скорости роста</a> трещины [8Ц от <a href="/info/1573231">коэффициента интенсивности напряжений</a> для сплава Ti—8 Al —1 Mo—1 V (<a href="/info/936949">изгибиый образец</a> с надрезом) в растворе 3,5% Na l при различных температурах, С
    Деление разрущения по типам А и Б следует считать условным, так как в разделе по разрушению сплавов, таких как Ti—8А1— —1 Мо— 1 V, отмечен переход от межкристаллитного растрескивания в области I к транскристаллитному растрескиванию в области II во многих средах. Типичная зависимость скорости роста трещины от коэффициента интенсивности напряжений для этого сплава в трех термически обработанных состояниях при испытании в спектрографически чистом метаноле показана на рис. 38 [91, 92]. В дополнение к сложному поведению этого сплава при растрескивании сплав Тг—11,5Мо—6 2г—4,5 5п разрушался межкристаллитно в области II как в нейтральных водных растворах, так и в растворах метанола с К1- Таким образом, вероятно, более значимо подразделять поведение сплавов при растрескивании на основе зависимостей от коэффициента интенсивности напряжений [c.336]

    Рис, 46. Зависимость скорости роста трещины V (1041 от текущего коэффициента интенсивности напряжений К для сплава Т1—8 А1—1 Мо—1 V (ДКБ, МА, 25 С), испытанного в спектрографически чистом ССи (/) и в ССи+Ь (2) — нет растрескивания [c.341]

Рис. 55. Зависимость скорости роста трещин и от коэффициента интенсивности напряжений К для снлава Ti— —8 Al—1 Mo—1 V (образец ДКБ. S ), испытанного в эвтектической смеси Li l—КС1 при 375 С в условиях наложения потенциала —900 мВ (по хлорсеребряному электроду) [104] Рис. 55. <a href="/info/73000">Зависимость скорости роста</a> трещин и от <a href="/info/1573231">коэффициента интенсивности напряжений</a> К для снлава Ti— —8 Al—1 Mo—1 V (образец ДКБ. S ), испытанного в эвтектической смеси Li l—КС1 при 375 С в условиях <a href="/info/71646">наложения потенциала</a> —900 мВ (по хлорсеребряному электроду) [104]
    Рпс. 82. Зависимость скорости роста трещины от коэффициента интенсивности напряжений для двух сгьяавов, состаренных ири низких температурах, ирн иены танин в 0,8 М КС1 в метаноле [105]  [c.373]

    В предыдущих разделах в графической зависимости скорости роста трещины от коэффициента интенсивности напряжений о—К были выделены три области I, 11, 111). В этих областях наблюдается больщое разнообразие морфологий разрущения в зависимости от состава силава, факторов микроструктуры, среды и уровня напряжения. На рис. 83 делается попытка представить морфологию разрушения, определяемую воздействием среды на рост трещины относительно обобщенного графика зависимости V ос К. В большинстве случаев рост трещины в области I определяется межкристаллитным разрушением (участок А) в области 11 — транскристаллитным сколом (участок С) и в суиеркритиче-ской области 111 [Л >Л 1с] — слиянием микропор (участок Е). Вследствие этого имеются переходные области между I я 11 — смешанное межкристаллитное и транскристаллитное разрушение-(участок В) между II и III — смешанное разрушение транскристаллитным сколом и ямочное разрушение (О). Имеется несколько исключений из этого общего описания разрущения, поэтому данные рис. 83 должны рассматриваться как сверхунрощенные. Эти исключения для различных сред рассматриваются ниже. [c.376]

    ВОВ Т1—8А1—1 Мо—IV (ЗС) и Т1—5А1—2,5 Зп. В последнем случае растрескивание происходит при напряжениях, близких к пределу прочности на растяжение, что возможно указывает на необходимость нахождения металла в области пластической деформации или в сложнонапряженном состоянии. Трещины могут также зарождаться и на гладких образцах некоторых (а+Р) и -сплавов при напряжениях вблизи предела текучести. В большей части представленных ранее экспериментов по КР рассматривалось зарождение трещины в связи с воздействием среды, начиная с предварительно существующей (статической) трещины. Уируго-пластическое поведение в вершине такой предварительно существующей трещины (подчеркнутое в модели ) недостаточно понятно, поэтому любой анализ распределения напряжений или деформации чрезвычайно затруднен. Наблюдение за надрезом, за влиянием остроты надреза и толщины образца указывает на важность вида напряжения, по крайней мере для а- и (а + Р)-сплавов. Поэтому любая теория по влиянию напряжения на КР должна объяснить несколько факторов важность вида напряжения (т. е. плосконапряженное состояние или условие плоской деформации) существование и значение порогового коэффициента интенсивности напряжений Klкv, зависимость скорости роста трещины от напряжения в области И а роста трещин и независимость от напряжения в области П роста трещин. [c.391]

    Типичная диаграмма коррозионного растрескивания представлена на рис. 4. Она описывает зависимость скорости роста трещины от коэффициента интенсивности напряжений и характеризует статическую трещиностойкость металлов в коррозионной среде. Диаграмма состоит из трех участков 1—111 и ограничена справа критическим коэффициентом интенсивности напряжения К ., при достижении значения которого трещина в воздухе развивается спонтанно, а слева — низшим пороговым значением коэффициента интенсивности напряжений (see - stre orrosion ra king - коррозионное растрескивание). Ниже напряжения трещина не развивается. [c.21]

    На рис. 89, 90 показаны зависимости скорости роста усталостной трещины от размаха коэффициента интенсивности напряжений для стали 08Х18Н10Т после длительной эксплуатации при 293 и 573 К, соответственно. Направление трещины в материале — вдоль оси трубы. Аналогичные диаграммы усталостного разрущения для этой же стали и тех же температур показаны, соответственно, на рис. 91, 92 для трещины, ориентированной в окружном направлении. [c.156]


Смотреть страницы где упоминается термин Коэффициент зависимость от скорости роста: [c.14]    [c.313]    [c.353]    [c.119]    [c.430]    [c.236]   
Химия несовершенных кристаллов (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент зависимость

Коэффициент скорости

Скорость зависимость



© 2025 chem21.info Реклама на сайте