Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смола полукоксования

    Изомерные триметилбензолы — псевдокумол, мезитилен, гемимеллитол— содержатся в продуктах каталитического риформинга нефтяных фракций и коксования каменных углей, а также в газовом бензине и смоле процесса переработки сланцев [58], в смоле полукоксования, в побочных продуктах некоторых процессов переработки ароматических углеводородов [59]. Большинство этих продуктов, по крайней мере в настоящее время, не может рассматриваться в качестве реальных источников сырья для выделения триметилбензолов ввиду чрезвычайно низкой концентрации последних. Практический интерес представляют лишь некоторые технические фракции, относительно обогащенные указанными соединениями. [c.264]


    Другой метод испытания стабильности основывается на нагреве хлористого алкила в пробирке без добавок или в виде раствора в ксилоле при 100°. В пробирке подвешивают полоску индикаторной бумаги, смоченной красителем конго. Полоска индикаторной бумажки с течением времени начинает синеть снизу вверх. В зависимости от стабильности хлорированного парафина изменение окраски (происходит быстро или в течение нескольких дней, а при весьма стабильных продуктах вообще не наблюдается. Наибольшую стабильность обнаруживает хлорированный когазин П. Нефтяные фракции и фракции продуктов гидрогенизации каменного угля или смол полукоксования бурых углей, наоборот, образуют при хлорировании весьма нестабильные продукты. [c.251]

    Процесс полукоксования горючих сланцев имеет некоторые специфические особенности. Этот вид ТПЭ содержит органическое вещество липо-идного происхождения, В пересчете на кероген выход смол полукоксования может достигать 60%, что отличает сланцы от других видов твердых топлив Переработка сланцев затруднена из-за их высокой зольности (40 - 60 мас.%), а также способности переходить в пластическое состояние при 300 - 350°С. [c.37]

    Ценность получаемой при швелевании смолы определяется главным образом содержанием в ней парафинов, которые представляют наибольший интерес и с точки зрения рассматриваемых в данной главе вопросов. Задачей переработки смолы полукоксования является получение возможно больших выходов этого ценного компонента. [c.49]

    Бензины более высокого качества получают путем деструктивной гидрогенизации первичной смолы полукоксования твердых горючих ископаемых [67]. [c.21]

    Продукты переработки сланцев. Из смолы полукоксования прибалтийских сланцев в промышленном масштабе выделяют фенолы, использующиеся в качестве шпалопропиточного материала, сырья для пластмасс, бакелитовых лаков и т. д. Для выделения фенолов смолу или ее фракции обрабатывают водным раствором щелочи. Полученный при этом раствор фенолятов отмывают бензолом или легким бензином от нейтральных масел и разлагают минеральной кислотой для выделения свободных фенолов. [c.234]

    Продукты переработки угля. Эффективные антиокислители, содержащие более 50% двухатомных фенолов, были обнаружены в продуктах полукоксования углей. В качестве антиокислителей исследовались различные образцы сырых фенолов из смол полукоксования и подсмольной воды, а также узкие фракции этих фенолов, полученные перегонкой сырых фенолов под вакуумом (табл. 70). [c.236]


Таблица 70. Относительная эффективность фенолов из смолы полукоксования углей как антиокислителей Таблица 70. <a href="/info/40931">Относительная эффективность</a> фенолов из смолы полукоксования углей как антиокислителей
    Фенолы из смолы полукоксования (фракция 240—330° С) [c.236]

    Узкая фракция фенолов из смолы полукоксования (фракция 230—270° С) [c.236]

    Фенолы из керосиновой фракции смолы полукоксования, образец 1 То же, образец 2 [c.236]

    Фенолы из бензино-лигроиновой фракции смолы полукоксования Фракции двухатомных фенолов, выделенных из подсмольной воды [c.236]

    Фенолы, выделенные из смол полукоксования черемховских углей, могут служить антиокислителями для автомобильных бензинов. Наибольшая эффективность среди исследованных фракций оказалась у образца фенолов, отогнанного в пределах 240—330° С. [c.236]

    Из полученных данных следует, что среди фенолов каменноугольного происхождения имеются эффективные антиокислители, значительно превосходящие древесносмольный антиокислитель. Так, отдельные фракции двухатомных фенолов, выделенные как из смол полукоксования, так и из подсмольных вод, оказались более чем в 2 раза эффективнее древесносмольного антиокислителя при оценке по длительности индукционного периода и почти в 5 раз эффективнее при оценке по торможению смолообразования в бензине (см. табл. 70). Высокие антиокислительные свойства показали суммарные фенолы из подсмольных вод и фракция фенолов 240—330° С из смолы полукоксования черемховских углей. Фенолы, выделенные из керосиновой фракции смолы полукоксования, практически равноценны по эффективности древесносмольному антиокислителю, а фенолы из бензино-лигроиновой фракции менее эффективны, чем древесносмольный антиокислитель. Следует отметить, что фенолы из продуктов полукоксования углей особенно эффективны при торможении смолообразования, когда бензины окисляются в присутствии металлов (см. табл. 70). [c.236]

    При исследовании фенолов из подсмольных вод особое внимание было обращено на вымываемость таких фенолов водой из бензинов [74]. и фенолы могут извлекаться водой из бензинов в большей степени, чем фенолы из смолы полукоксования или фенолы древесносмольного антиокислителя (табл. 72). Однако бензин, содержащий фенолы из подсмольных вод, и после обработки водой в очень жестких условиях сохраняет высокий уровень стабильности. [c.237]

    Фенолы из смолы полукоксования черемховских углей (фракция 240— 330.° С) [c.238]

    Антиокислитель ФЧ-4 получают из керосиновой фракции смолы полукоксования черемховских углей (ТУ МНП 285—49), а антиокислитель ФЧ-16—из подсмольных вод полукоксования черемховских углей путем извлечения фенолов бутилацетатом, который затем отгоняется. Содержание фенолов в антиокислителе —85% [77]. [c.316]

    Смола полукоксования представляет собой сложную смесь, из которой получают моторное топливо, растворители, индивидуальные органические соединения. Особенно богаты по составу сланцевые смолы, комплексная переработка которых дает газообразное и жидкое топливо, различные растворители, масла, эпоксидные смолы, многочисленные индивидуальные химические соединения и др. Методы переработки смолы аналогичны методам переработки нефти (см. с. 59) смолу полукоксования подвергают прямой гонке или деструктивной переработке, т. е, различным видам крекинга. [c.47]

    Антиокислитель ФЧ-16 был предложен в 1956 г. [69] в связи с расширением потребности в ингибиторах для бензинов и керосинов в последние годы производство его значительно увеличено. Он представляет собой фракцию 260—300 °С технических фенолов из подсмольных вод смолы полукоксования черемховских углей. Активной частью антиокислителя являются одно- и двухатомные фенолы, которых, согласно ТУ 38-1-139—67, должно быть не менее 85% [1Ю]. [c.111]

    Деструктивная гидрогенизация. Процесс заключается в крекинге твердого и жидкого сырья под давлением 300—700 ат. Высокое парциальное давление водорода в зоне реакции позволяет подвергать крекингу такие тяжелые виды сырья, как уголь, сланцы, тяжелую смолу полукоксования углей и нефтяные остатки типа гудрона. Температура процесса 420—500 С. Катализаторы содержат железо, вольфрам, молибден, никель. Целевым продуктом является обычно бензин, но можно отбирать и более тяжелые дистилляты (типа дизельного и котельного топлив). [c.11]

    В. Н. Ипатьевым (Россия). Первые промышленные установки деструктивной гидрогенизации угля и смолы полукоксования углей были введены в эксплуатацию в 1927 г. в Германии, не обладавшей нефтяными ресурсами и развившей впоследствии свою топливную промышленность на базе твердых горючих ископаемых. Значительные работы в области гидрогенизации углей были проведены в Германии Ф. Бергиусом, поэтому промышленный процесс некаталитической гидрогенизации угля иногда носит название бергинизации. Несколько позднее установки деструктивной гидрогенизации были сооружены в Англии. Характерно, что в странах, богатых нефтью,— в Советском Союзе и США, несмотря на большой объем исследований, осуществленных в области деструктивной гидрогенизации, промышленного внедрения процесс практически не получил вследствие исключительно неблагоприятных экономических показателей. [c.263]


    Имеются возможности получения ароматических углеводородов из смол полукоксования и продуктов гидрогенизации низкотемпературных смол и углей. Непосредственное производство ароматических углеводородов из таких сложных смесей невозможно. В отличие от высокотемпературной каменноугольной смолы в них содержатся все виды углеводородов, фенолов и основания, причем содержание отдельных соединений незначительно и не оправдывает расходы на их извлечение [16, с. 80]. [c.202]

    На рис. 43 показана схема материальных потоков при переработке 1 млн. т смолы полукоксования в псевдоожиженном слое, которая может быть получена из 12,2 млн. т угля [173]. Приводятся многочисленные оценки балансов химических продуктов на перспективных предприятиях по переработке угля. Например, в работе [174] рассматривается схема комплексного предприятия по производству топлив и сырья для химической промыщленности производительностью по углю 66 тыс. т/сут (или около 22 млн. т в [c.203]

    Смолы полукоксования, которые часто называют первичными, содержат значительное количество термически нестабильных алифатических угле- [c.30]

    Действующие сегодня классификации рассматривают уголь в основном как энергетическое топливо, поэтому в них недостаточно отражены свойства, важные для процессов химико-тех-нологической переработки. В настоящее время во многих странах ведутся исследования по разработке методов однозначной оценки пригодности любого угля для различных направлений его технологического использования, в том числе и для переработки в моторные топлива. В Советском Союзе в последние годы завершена разработка такой единой классификации углей на основе их генетических и технологических параметров (ГОСТ 25543—82). По этой классификации петрографический состав угля выражается содержанием фю-зинизированных микрокомпонентов (20К). Стадия мета р-физма определяется по показателю отражения витринита (Л ), а степень восстановленности выражается комплексным показателем для бурых углей — по выходу смолы полукоксования, а для каменных углей — по выходу летучих веществ и спекаемости. Каждый из классификационных параметров отражает те или иные особенности вещественного состава и молекулярной структуры углей. [c.67]

    Выбор температурных режимов при деструктивной гидрогенизации зависит от состава исходного сырья. Например, битуминозные бурые угли, нефтяные фракции и смолы полукоксования целесообразно перерабатывать при 440-475 С, а каменные угли при 470-480 С. [c.133]

    В качестве примера высокой эффективности противоокислительных присадок можно привести данные по повышению химической стабильности крекинг-бензинов при введении 0,065% мае. фенолов, выделенных из подсмольных вод при переработке смол полукоксования черемховских углей (табл. 7.5) [12]. [c.264]

    Синтетические масла из керосиновых фракций смол полукоксования углей // Химия твердого топлива, 1934 (Бармаков). [c.46]

    Содержание фенолов и азотистых оснований в жидкофазных гидрогенизатах черемховского угля и смолы полукоксования [c.840]

    Жидкофазного гидрогенизата смолы полукоксования. ........ 14,5 1.5 79,0 2 [c.840]

    При гидрогенизации смол полукоксования каменных углей выход фенолов несколько ниже. [c.842]

    Из гидрогенизатов смолы полукоксования бурых углей на заводах гидрирования также выделяют фенолы. Промышленное извлечение фенолов из фракций гидрогенизатов производится раствором едкого натра с последующим разложением фенолятов углекислотой и регенерацией щелочи. [c.842]

    При нарофазном гидрировании широко фракци жидкофазного гидрогенизата смолы полукоксования черемховского угля в одну ступень над аналогич ым катализатором (с применением отечественного носителя) [c.843]

    Препарат 125 (натриевые соли продуктов нитрования фенолов, выделенных нз смол полукоксования сланцев или угля), (пары и аэрозоль) [c.258]

    Парафин, получаемый в больших количествах и достаточно высокой чистоты, например, из смолы полукоксования бурых углей, из нефти или при синтезе по Фишеру — Тропшу, плавят и после добавки катализатора, например иода, пятихлористой сурьмы (или без катализатора, но при несколько более высокой температуре), хлорируют, пропуская [c.234]

    Пиролиз древесносмоляных масел разрабатывался первоначально для получения вяжущего материала, необходимого при формовании древесных плит из отходов деревообрабатывающих предприятий (стружки, опилки и т. д.). Однако такое изменение состава древесносмоляных масел, судя по исследованиям антиокислителей из смол полукоксования углей, должно было привести к улучшению антиокислительных свойств. [c.240]

    Жидкпе побочные продукты высокотемпературного коксования углей — смола п бензол — уже давно пспользуются в ряде стран, наряду с нефтепродуктамн, в качестве котельного топлива, в дпзель-моторах и в двигателях внутреннего сгорания взрывного типа. Однако количество бензола, получающегося во всем миро, несмотря на колоссальные масштабы промышленности высокотемпературного коксования, составляет всего 1 % мировой добычи нефти. Что н е касается каменноугольной смолы, то она идет также на пропитку шпал и используется в красочной и в других отраслях химической промышленности, да н качество ее как топлива весьма невысоко. Выход низкотемпературной смолы полукоксования пз тех же сортов углей составляет уже 10 —12/о (вместо 2—3% смолы высокотемпературной) и качество смолы как моторного топлива здесь выше. Кроме того, для полукоксования предпочтительны именно угли, богатые летучими, т. е. непригодные для высокотемпературного коксования. [c.18]

    П. С. Маковецкий и К. Б. Холодовская [161] применили указанный выше способ для определения содержания серы во фракциях 76—290° смолы полукоксования бурого угля УССР. В то время как анализы фракции 230— 290° дали хорошие результаты, анализы фракции 76—230° были неудовлетворительными из-за проскока при сожжении легколетучих веществ самого вещества и продуктов его сгорания. [c.411]

    С 1956 г. в нашей стране начали применять актиокислитель ФЧ-16, представляющий собой фракцию 260—300°С технических фенолов из подсмольных вод смолы полукоксования черемховских углей. Активная часть антиокислителя — одно- и [c.358]

    I. Деструктивная гидрогенизация. На основании фундаментальных исследований Бергиуса в лабораториях химического концерна Фарбениндустри (Оппау) были разработаны методы так называемой деструктивной гидрогенизации угля. Для этого оказалось необходимым не только изучить основные химические и каталитические реакции, но и создать совершенно новую технику высоких давлений. Однако эти работы были значительно облегчены благодаря большому опыту, приобретенному в результате развития промышленности синтеза аммиака и метанола. Уже в 1924 г. удалось получить с количественным выходом бензин из смолы полукоксования бурого угля путем ее гидрирования в присутствии молибденовых катализаторов при 450° и 200 ат. Этот способ в 1927 г. был осущест1 лен в крупном масштабе на заводах Лейна. [c.95]

    Проведенные ранее исследования жидкофазных гидрогенизатов, полученных из черемховского угля и смолы полукоксования этих углей, дают близкие к приведенным значениям (табл. XIII.3) содержания кислородсодержащих и азотистых соединений [28]. [c.840]

    Порофор ЧХЗ-5 (п-метилуретанбензолсульфогидразй ) Препарат 125 (натриевые соли продуктов нитрования фено лов, выделенных из смол полукоксования сланцев или [c.247]

    В СССР с применением ПАВ за 1959—1970 гг. построено св 15 000 км дорог. Были использованы поверхностно-активные до ки катионного (октадециламин, длинноцепочечные амины, ката эвазин и др.) и анионного (синтетические жирные кислоты и кубовые остатки, окисленный петролатум, окисленный рисайкл, сиполовая смола, жировой гудрон, мазутные полукоксовые фене железные соли указанных выше продуктов) типов. В качестве д( вок применялись также смолы твердых топлив древесная и тор ная смолы, низкотемпературный каменноугольный деготь, ангаре тяжелая смола полукоксования). [c.232]

    Необходимо отметить, что смолы полукоксования нельзя рассматривать как сырье подобное нефти или высокотемпературной смоле коксования. Главное ее отличие заключается в относительно малом содержании углеводородов, высоком содержании термически нестабильных кислородсодержащих соединений. Вследствие малой стабильности смол реальным решением проблемы утилизации может быть их пиролиз, коксование или термоокисли- [c.39]


Смотреть страницы где упоминается термин Смола полукоксования: [c.131]    [c.248]    [c.39]    [c.199]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полукоксование



© 2025 chem21.info Реклама на сайте