Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазеры, использование органических молекул

    Оценка потенциальной возможности использования органических молекул для лазеров с теоретической точки зрения сделана автором настоящей работы [209]. В случае молекул с долгоживущими (несколько секунд) триплетными состояниями, таких, как нафталин, фенантрен, хризен и т. п., в твердой среде сравнительно легко добиться достаточного уменьшения заселенности основного уровня, чтобы достичь инверсии. Однако вследствие очень малой силы осциллятора для перехода с фосфоресценцией ( -10 ) требуются либо очень длинные пути (10 м или больше), либо высокая концентрация, чтобы обеспечить достаточное усиление при каждом прохождении луча, возмещающее потери на отражение на концевых зеркалах. Существует возможность использования этих систем для устройства лазеров с четырьмя уровнями. Другими словами, можно добиться вынужденного испускания при переходе на возбужденный колебательный уровень основного состояния. Заселенность таких возбужденных уровней, особенно при низких температурах, практически равна нулю. Исчезает необходимость уменьшения заселенности основного состояния более чем на 50%, Совершенно незначительное число молекул, находящихся в триплетном состоянии, позволяет удовлетворить требование инверсной заселенности по отношению к почти не занятому нижнему состоянию. Однако необходимо также удовлетворить и другое требование для работы лазера — усиление, превосходящее потери на концах. Мы приходим к выводу, что все еще могут оказаться необходимыми очень большие длины путей пучка. Учитывая все эти данные, мы приходим к выводу, что для экспериментальной проверки наличия возможного лазерного эффекта с использованием молекулярной люминесценции время жизни последней должно находиться в пределах от 10 до [c.135]


    Использование лазерного излучения в ультрафиолетовом и видимом диапазонах обусловлено тем, что лазеры представляют собой удобные высокоинтенсивные источники света и могут ускорять процессы, что обусловлено нагревом вещества. Примером служат процессы пиролиза смесей углеводородов с реакции между частицами Сщ, испаряемыми из графита в результате лазерного излучения, и органическими молекулами с получением ацетилена и др. [16]. Преимущество лазерного пиролиза заключается в возможности быстрого нагрева малых площадей и объемов до высоких температур. [c.190]

    Практическое применение лазеров на органических люминофорах основано на их использовании как когерентных монохроматических источников света переменной частоты. Они полезны при изучении процессов, происходящих в возбужденных состояниях молекул веществ, способных генерировать и при исследовании фотохимических реакций. Интенсивное монохроматическое излучение с частотой, резонирующей с одной из частот колебаний сложной молекулы, может вызвать направленные процессы различных превращений молекул [6]. [c.265]

    Разработка перестраиваемых лазеров на органических красителях [112] привела к созданию методов возбуждения специфических электронных переходов в атомах и молекулах и, следовательно, к использованию методов резонансного рассеяния и дифференциального поглощения для дистанционного зондирования. Как показано в табл. 6.3, органические красители для перестройки лазерного излучения выпускаются серийно, что позволяет охватить область длин волн от ближней ультрафиолетовой до ближней инфракрасной. Инверсия населенности в красителе создается оптической накачкой при помощи импульсной лампы-вспышки или другого лазера. Для импульсного режима наиболее часто применяют азотный лазер, в то время как режим непрерывного излучения получают накачкой при помощи жестко сфокусированного аргонового лазера. Лазеры на красителях с накачкой импульсными лампами в целом дают импульс большой энергии, однако его длительность довольно велика (сотни наносекунд) для измерений с требуемым пространственным разрешением. Тем не менее подобная система может работать в режиме работы генератора-усилителя и является идеальной для зондирования верхних слоев атмосферы [7]. [c.347]


    Все разработанные до сих пор лазеры действуют либо в инфракрасной области, либо в красной области видимого спектра. Рубин, например, генерирует когерентное излучение при 6943 А. Не изготовлено еще ни одного лазера, работающего при более коротких длинах волн в видимой или ультрафиолетовой областях спектра. Заманчивой представляется возможность использования для создания лазеров фосфоресценции или флуоресценции органических молекул. Имея в своем распоряжении огромное множество органических молекул, можно затем сконструировать лазерные источники света для любой выбранной длины волны, просто подбирая подходящую молекулу. Тонкая настройка может быть осуществлена выбором групп заместителей. В лаборатории автора начиная с 1960 г. были выполнены исследования органических материалов, пригодных для использования в качестве лазерных сред. В то же время было выдвинуто предложение попробовать осуществить лазерный эффект при использовании синглетных и триплетных состояний ароматических молекул [208]. Еще в 1954 г. Портер и Виндзор [167] сообщили о получении 20% конверсии молекул в низшее триплетное состояние при импульсном фотолизе растворов антрацена. Позднее было обнаружено уменьшение нормальной заселенности основного состояния более чем на 50% у других молекул, таких, как коронен, 1,2 5,6-дибензантрацен, тетрацен и пентацен [168, 207]. Учитывая, что энергия вспышки составляла только несколько сотен джоулей, первое требование работы лазера, а именно инверсная заселенность, выполнялось очень легко в случае триплетных состояний ароматических углеводородов. В то время, конечно, не были изобретены ни лазеры, ни мазеры, и потенциальное значение достижения инверсной заселенности у каких-либо молекул не было оценено должным образом. [c.134]

    К настоящему времени разработано несколько видов лазеров с перестраиваемой частотой, В одном из них это ценное свойство реализуется путем использования рабочего тела (активной среды) с широким спектром флуоресценции. Наиболее широкими и, что особенно важно, сплошными спектрами флуоресценции обладают сложные органические соединения. Фактически только они и пригодны для эффективной генерации излучения с частотой, плавно перестраиваемой в широких пределах. Органические соединения вообще занимают особое место в богатом арсенале разнообразных активных сред, которым располагает квантовая электроника. Практически неограниченное количество органических соединений— соединений углерода, образующих как простые, так и весьма сложные устойчивые многоатомные молекулы,— обеспечивает получение лазерного излучения с длинами волн в диапазоне от 0,3 до 2000 мкм. Генерация излучения в этих активных средах может быть осуществлена благодаря переходам между вращательными, колебательно-вращательными или электронно-колебательными уровнями молекул. [c.160]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]

    Способность молекул органических соединений генерировать излучение и эффективность генерации определяются более или менее благоприятным сочетанием целого ряда их физико-химических свойств, начиная от спектрально-люминесцентных и кончая, например, такими как давление насыщенных паров при заданной температуре. При использовании молекул с подходящим комплексом свойств необходимо также располагать источником накачки, обеспечивающим достаточное для развития и поддержания импульсной или стационарной генерации возбуждение молекул. Весьма важную роль играют безызлучательные внутри- и межмолеку-лярные релаксационные процессы, стремящиеся вернуть возбужденную молекулу в равновесное состояние. Эти процессы могут быть как полезными, так и вредными. В первом случае они способствуют созданию необходимой для генерации инверсии заселенностей пары рабочих уровней лазера, во втором — конкурируют с лазерным переходом. Их вероятность определяется прежде всего числом колебательных степеней свободы в молекулах, т. е. сложностью молекул. От степени сложности молекул, плотности молекулярных колебательно-вращательных состояний и скоростей релаксационных процессов зависит и возможность непрерывной перестройки частоты генерируемого излучения в широком спектральном диапазоне. Многие из молекулярных параметров, знание которых необходимо для выбора органического соединения в качестве потенциальной активной среды лазера, до сих пор неиз- [c.161]


    Большую роль в решении этой задачи играют исследования и разработка ИК-лазеров с оптической накачкой. Активными средами таких лазеров могут быть многие органические соединения в газовой фазе, что позволяет получить разнообразные частоты ИК-генерации. Поиск и использование активных сред, способных работать при давлениях 1—3 МПа, когда в результате перекрывания соседних линий излучения из-за столкновительного ушире-иия становится возможной непрерывная перестройка частоты генерации, могут привести к созданию ИК-лазеров с перестраиваемой частотой, свободных от недостатков и трудностей, с которыми связана работа электроразрядных газовых лазеров повышенного давления (неоднородность электрического разряда в газе, оптическая неоднородность активной среды). Оптическая накачка является мягкой , неразрушающей активную среду накачкой, что позволяет использовать в качестве активных сред дорогостоящие вещества (например, обеспечивающие непрерывную перестройку частоты генерации смеси изотопически замещенных молекул одного вида [56, 57]). Наконец, такая накачка может быть весьма селективной, т. е. возбуждать только наиболее благоприятный для генерации на данном переходе исходный уровень, что важно для эффективности лазера и установления механизма генерации. Источниками оптической накачки здесь слул<ат прежде всего известные лазеры ИК-Диапазона спектра, но также лазеры видимого диапазона и даже импульсные лампы. [c.177]

    Монография является органическим продолжением монографии авторов Вероятности оптических переходов двухатомных молекул (М., Наука, 1980). Издание подобного рода первое в отечественной и мировой литературе. В книге представлено современное состояние исследований по радиационным параметрам молекул, имеющим большое значение для развития ряда современных разделов науки и техники — астрофизики и астрохимии, физики газовых лазеров, плазмохи-мии и др. Приведены рекомендации для практического использования значения факторов Франка-Кондона более чем для 400 электронных переходов 180 двухатомных молекул рекомендации даны на основе критического анализа результатов оригинальных работ по расчетам факторов, опубликованных вплоть до 1984 г. Представлены алгоритмы важнейших методов расчета факторов Ф — К, легко переводимые на язык ЭВМ. [c.319]

    Метод электронного парамагнитного резонанса (ЭПР) за тридцать лет, прошедншх со времени открытия Е. К. Завойского, превратился в один из основных пнструментов исследовапия строения вещества и кинетики различных химических процессов. Сейчас трудно найти физико-химическую лабораторию, которая не использовала бы в той или иной степени метод ЭПР. Области применения ЭПР крайне разнообразны. Здесь и исследование геометрии и конформации свободных радикалов и триплетных состояний молекул, и изучение координационного состояния парамагнитных ионов в твердых телах, и различные вопросы молекулярного движения в жидкостях и твердых телах, и проблемы электронной структуры молекул. Использование метода ЭПР открыло совершенно новые возможности в радиационно-химических исследованиях, поскольку парамагнитные состояния, в частности вободпые радикалы, являются промежуточными продуктами на одной из стадий радиационно-химического процесса. Нельзя не упомянуть ппхрокого применения метода ЭПР в биологии, в неорганической и органической химии, в гомогенном и гетерогенном пата лизе, в минералогических исследованиях и изучении материалов для твердотельных лазеров. Возможность следить за концентрацией парамагнитных частиц по интенсивности спектра ЭПР открыла новые перспективы в кинетических исследованиях, особенно в кинетике химических процессов в твердой фазе. [c.3]

    А. Н. Теренин и сотр. [780] сообщили о двойной спектральной сенсибилизации распада органических соединений. Ацетофенон ( первый сенсибилизатор ), возбужденный в триплетное состояние, передает энергию нафталину ( второму сенсибилизатору ). Триплетный нафталин поглощает второй фотон и переходит в состояние Т2, энергия которого уже достаточна для того, чтобы, будучи переданной субстрату [СИз1, (СНз)зСОН], осуществить его разложение. В исследованиях по двухфотонным реакциям высокая концентрация возбужденных молекул, способных поглотить второй фотон, создается благодаря использованию твердых растворителей (см. последние работы [781—784]). Другой способ осуществления двухфотонных процессов — возбуждение световыми потоками весьма высокой интенсивности (см., например, работу по фоторазложению безметалльного фталоцианина под действием мощного рубинового лазера [785]). — Прим. ред. [c.452]


Смотреть страницы где упоминается термин Лазеры, использование органических молекул: [c.250]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.133 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

Органические молекулы

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте