Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бора теория атома

    Основные положения своей теории строения атома Бор сформулировал в виде постулатов. Эти постулаты накладывают определенные ограничения на разрешенные классической физикой формы движения. Первый постулат Бора электрон в атоме может находиться только в стационарных или квантовых состояниях с дискретными значениями энергии Еп, в которых атом не излучает. Для стационарных состояний момент количества движения электрона М равен целому кратному постоянной Планка Й= (/ /2я), т. е. [c.34]


    Следуя теории Бора для атома водорода, Зоммерфельд предложил такое правило квантования, что при его применении к атому водорода модель Бора не противоречит волновой природе электрона, постулированной де Бройлем. Вывести выражение для уровней энергии атома водорода, используя правило Зоммерфельда, согласно которому разрешенные электронные орбитали представляют собой окружности с длиной, кратной длине волны электрона. [c.405]

    Так как квантовые числа I, т и не вносят ничего в энергию электронного состояния, то все возможные состояния в данном) радиальном уровне энергетически равны. Это значит, что в спектре будут наблюдаться только единичные линии, такие, как предсказывал Бор. Однако хорошо известно, что в спектре водорода существует тонкая структура, изучение которой было толчком к развитию теории Бора — Зоммерфельда для атома водорода. Очевидно, что простая форма волнового уравнения не вполне адекватно описывает атом водорода, и, таким образом, мы находимся в-положении, лишь немного лучшем того, когда опирались на модель атома Бора. [c.70]

    Н, Бор предложил свою теорию строения атома. При этом Бор не отбрасывал полностью старые представления о строении атома как и Резерфорд, он считал, что атом сходен с солнечной системой, т. е. электроны двигаются вокруг ядра, подобно планетам, движущимся вокруг Солнца. Тем самым электронам приписывались классические траектории движения, однако в основу новой теории были положены два необычных предложения  [c.35]

    Успех теории Бора ограничился возможностью ее применения только к атому водорода. При попытках применения теории Бора к атому гелия она уже оказалась малоэффективной. Расчеты более сложных атомов на основе применения упрощенных представлений Бора выполнить оказалось вообще невозможно. Несмотря на внесенные Арнольдом Зоммерфельдом (1863— 1951) в теорию Бора усовершенствования, в связи с которыми была учтена возможность движения электронов в атоме не только по круговым, но и по эллиптическим орбитам, эта теория должна была уступить место новым воззрениям. [c.26]

    Таким образом, теперь ясно видна необходимость использования трех квантовых чисел для описания энергии электрона. Каждое новое квантовое число вводилось для удовлетворения требований эксперимента. Однако даже с этими тремя квантовыми числами невозможно было полностью объяснить линейчатые спектры. Например, действие слабого магнитного поля приводит к так называемому аномальному эффекту Зеемана, который нельзя было понять на основе модели Бора — Зоммерфельда. Кроме того, у атома Бора и его вариантов было множество других недостатков. Одним из них, и, по-видимому, наиболее существенным, была невозможность применения теории Бора к более сложным атомам. Приложение ее к спектру даже такого простого атома, как атом гелия, приводило к полной неудаче, и все попытки понять основы периодической системы в рамках модели Бора были безуспешны. Это показывает, что все вышеизложенное верно только для одноэлектронной системы. Такое ограничение не имеет смысла, и поэтому очевидна необходимость найти что-то лучшее. [c.37]


    Электронную теорию строения атома выдвинул датский физик Нильс Бор. Согласно этой теории, атом состоит из ядра и окружающей его электронной оболочки. [c.57]

    Атом водорода. Простейшим из атомов является атом водорода, построенный из положительно заряженного ядра и одного отрицательно заряженного электрона. Согласно теории Бора электрон и ядро вращаются вокруг общего центра тяжести системы и обладают, таким образом, некоторой кинетической энергией электрон и ядро Е . Радиусы орбит, по которым вращаются электрон и ядро, обратно пропорциональны массам рассматриваемых частиц [c.51]

    Мы рассмотрели наиболее распространенный тип химической связи в органических соединениях, основываясь на теории строения атома Резерфорда — Бора, по которой атом водорода состоит из положительно заряженного ядра, вокруг которого вращается электрон. Эта теория рассматривает электрон как частицу, несущую отрицательный заряд и вращающуюся вокруг ядра по [c.18]

    Применение теории де Бройля к атому водорода приводит к интересным результатам и, в частности, к новому толкованию первого постулата Бора. Если длина волны электрона X = h/mv, то можно представить, что состояние атома устойчиво в том случае, если на его орбите укладывается целое число длин волн (стоячие волны)  [c.40]

    Таким образом, складывалась весьма запутанная и противоречивая ситуация эксперимент говорил в пользу планетарной (ядерной) модели атома, тогда как согласно известным физическим законам такой атом существовать не мог. Выход был найден Н. Бором, теория которого опиралась на модель атома, предложенную Резерфордом, эмпирически установленные закономерности в атомных спектрах и гипотезу М. Планка. На последней надо остановиться особо. [c.7]

    Во-вторых, Бор объяснил происхождение и характер спектра водорода. Давно было известно, что атомы водорода, активированные каким-либо способом (нагреванием или действием электрического поля), излучают свет. Спектр этого излучения состоит из воли строго определенной длины, т. е. спектр излучения не с1 лошной, а линейчатый. Согласно квантовой теории света это означает, что возбужденный атом водорода излучает кванты, об- [c.25]

    По теории Бора каждый атом может находиться лишь в дискретном ряде стационарных (устойчивых) состояний, характеризующихся определенными значениями энергии в этих состояниях атом не излучает. При поглощении определенной порции (кванта) света или при ином энергетическом воздействии атом переходит на более высокий уровень энергии, при излучении — опускается на более низкий. Возможным переходам между энергетическими уровнями соответствует группировка спектральных линий в серии, наблюдаемая в спектрах излучения и поглощения атомов и молекул. По положению спектральных линий в спектре можно судить об уровнях энергии и внутреннем строении атома, а по [c.12]

    Частицы и волны. Теория Бора, с основными положениями которой мы познакомились в 6 и 7, давая возможность определить положение линий в спектре водородного атома (и некоторых других простейших атомных систем), не могла, как это уже указывалось, объяснить ряд других явлений, например различия в интенсивности этих линий. Она оказалась недостаточной также для объяснения строения атомов более сложных, чем атом водорода, и, что особенно важно для химии, не могла объяснить в общем случае связь между атомами в молекулах, т. е. природу химической связи. [c.43]

    Первый предварительный ответ на этот вопрос дал Джильберт Ньютон Льюис, крупнейший американский химик, в 1916 году, вскоре после создания Бором теории атома. При ионной связки электроны переходят от атома к атому так, чтобы образовались устойчивые оболочки благородных газов, содержащие 2 электрона или 8 электронов. У гелия замкнутую оболочку образуют 2 электрона, у неона, аргона и т. д.—8 электронов. [c.116]

    Спектры и потенциалы ионизации (ПИ) атомов щелочных металлов (элементов группы 1А в периодической системе) удается довольно хорошо аппроксимировать в рамках теории Бора, если заменить п эффективным квантовым числом п = п—с1), где с1 — так называемый квантовый дефект. Исходя из значения первого потенциала ионизации, вычислите квантовый дефект для 5-электрона и энергию перехода ( +1)5-<-я5 в атомах и (п = 2 ПИ = 5,363 эВ) и Ка = 3 ПИ = 5,137 эВ). Используйте для постоянной Ридберга значение, соответствующее атому водорода (т. е. предположите, что электроны внутренних оболочек полностью экранируют ядро), (Экспериментальное значение для энергии указанного перехода в атоме Ка составляет 25 730 см . ) [c.26]

    Почему теория Бора неприменима к атому лития Как Зоммерфельд пытался преодолеть эту трудность В чем заключалось несовершенство его теории  [c.378]

    Атом первого элемента в Периодической системе — водорода — обладает наипростейшим строением. Он состоит всего из двух частиц протона и электрона, — между которыми существуют лишь силы притяжения. Не случайно именно для атома водорода оказалась успешно применимой первая квантовая теория — теория Бора, и только для этого атома волновое уравнение Шредингера имеет точное решение. [c.292]


    К этому следует добавить, что хотя в теории Бора (как и в квантовой механике) все стационарные состояния равноправны, отличаясь друг от друга только значениями энергии и других физических величин, в действительности же, по своему физическому характеру, они существенно различны в основном состоянии изолированный атом может находиться сколь угодно долго, тогда как в возбужденном — всего лишь порядка 10- с. Эта неравноценность состояний (хотя все они полагаются стационарными ) получила свое объяснение только в квантовой теории поля, [c.14]

    Основным аргументом в пользу теории Бора был математический расчет уровней энергии атома водорода и объяснение п р и-роды спектра. Модель атома, предложенная Бором, отражала структуру только простейшего атома — водорода и не подходила ни к какому другому атому. Теперь она представляет только исторический интерес. [c.55]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Атом водорода. Первая количественная теория атома была разработана Бором для наиболее простого из атомов — атома водорода. В 1913 г. он опубликовал результаты теоретического расчета модели атома водорода, ирекрално подтверл<дающиеся экспериментальными данными о спектре водорода. Теория эта основывалась на некоторых допущениях (постулатах), следствия из которых оказались в хорошем согласии с данными опыта. Позднее в несколько другой интерирегацин эти постулаты получили [c.27]

    Постулаты Бора. В основе теории Бора лежат два постулата, выходящие за рамки классической физики. Согласно первому постулату атом не излучает энергию и является устойчивым лишь в некоторых стационарных (неизменных во времени) состояниях, соответствующих дискретному (прерывному) ряду возможных значений энергии Ех, г, з--- Любое изменение энергии связано с квантовым (скачкообразным) переходом из одного состояния в другое. Согласно второму постулату при переходе из одного стационарного состояния с энергией г в другое с энергией Еь атом испускает или поглощает свет определенной частоты в виде кванта излучения (фотона) /IV. Причем [c.44]

    Пути преодоления этой трудности были подсказаны Бору разработанной Планком квантовой теорией испускания света раскаленными телами и выдвинутой Эйнштейном теорией фотоэлектрического эффекта и светового кванта. Как Планк, так и Эйнштейн принимали, что свет с частотой V не излучается и не поглощается веществом в произвольно малых количествах, а только квантами энергии ку. Если атом водорода, в котором электрон вращается вокруг ядра по большой круговой орбите, испускает квант энергии ку, то после этого электрон должен уже находиться на значительно отличающейся от прежней (меньшей) круговой орбите, отвечающей энергии атома, на ку меньше его началь- [c.120]

    Не составляет труда записать волновое уравнение Шрёдингера для атома лития, состоящего из ядра и трех электронов, или атома урана, состоящего из ядра и 92 электронов. Однако, к сожалению, эти дифференциальные уравнения невозможно решить. Нет ничего утешительного в том, что строение атома урана в принципе может быть найдено путем расчетов, если математические (хотя отнюдь не физические) трудности препятствуют получению этого решения. Правда, физики и физикохимики разработали для решения уравнения Шрёдингера множество приближенных методов, основанных на догадках и последовательных приближениях. Проведение последовательных приближений существенно облегчается использованием электронно-вычислительных машин. Однако главное достоинство применения теории Шрёдингера к атому водорода заключается в том, что она позволяет получить ясную качественную картину электронного строения многоэлектронных атомов без проведения дополнительных расчетов. Теория Бора оказалась слишком упрошенной и не смогла дать таких результатов, даже после ее усовершенствования Зом-мерфельдом. [c.374]

    ИТ из определенного числа (может быть, очень большого, но не бесконечного) отдельных порций (квантов). Устойчивость атома была объяснена Н. Бором (1913) на основании понятия о квантовании энергии. Атом не излучает и не поглощает энергию при движении электронов только по определенным (стационарным) орбитам. По теории Бора орбита является стационарной, если электрон на ней обладает моментом количества движения (т иг), равным целому числу п квантов действия тп иг = пк/2п. [c.35]

    Обобщение Рица распространяется на излучение и более сложных атомов, чем атом водорода. Уравнение (2.4) было положено в основу теории строения атома водорода Нильса Бора (1913). [c.27]

    Что нового ввел Н. Бор в представление об атоме Дайте краткое изложение постулатов Бора применительно к атому водорода. В чем теория Бора оставалась на позициях классической физики и в чем отвергала их применение к атому  [c.76]

    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    Бора теория Теория ат. стр-ры, постулируюшая движение эл-на в одной из определ. дозволенных круговых орбит вокруг ядра. Переход эл-на между этими орбитами сопровождается погло-шением или вьщелением эл.-магн. излучения — кванта энергии. [c.36]

    Из шести атомов водорода в В,Н( оказалось возможным заместить группами СНд только четыре атома в этих метилированных соединениях никогда не бывает двух групп СН , соединенных с данным атомом бора. Теория резонансных мостиков (но не теория структур с одноэлектронной связью) требует, чтобы на каждый атом бора всегда приходился по крайней мере один атом водорода. Таким образом, известно соединение В (СНд) , а не ВН (СНз)з или BHj (СНд), которые, очевидно, могли бы сконденсироваться с образованием BjHj ( Hg) и В,Н (СНд), соответственно. [c.571]

    Трпмотилбор представляет собой плоскостную молекулу [195], содержащую только шесть валентных электронов. Они использованы для образонания 1 рех связей с тремя метильными группами. Теория предсказывает, что атом бора в этой молекуле для образования трех связей использует гнбридизованные орбиты Следовательно, остается свободная орбита 2р, которая еще не используется . [c.394]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Квантовая механика основана на том, что все существующее и происходящее в окружающем нас мире — вещества, излучения, процессы — имеет прерывистую (дискретную) природу. Из этого следует, что любой объект изучения нельзя делить беспредельно, не изменяя его природу, так как он состоит из определенного числа (может быть очень большого, но не бесконечного) отдельных порций (квантов). Устойчивость атома была объяснена Н. Бором (1913) на основании понятия о квантовании энергии. Атом не излучает и не поглощает энергию при движении электронов только по определенным (стационарным) орбитам. По теории Бора орбита является стационарной, если электрон на ней обладает моментом количества движения Шеиг), равным целому числу п квантов действия Шеиг = пк/2п. [c.27]

    Основной причиной несостоятельности теории Бора — Зоммерфельда явилось противоречие между микроскопичностью объектов (электрон, атом) и способом их описания (классическая механика, все законы которой отнесены к большим телам или макрообъектам). Это противоречие возникло потому, что в период создания теории Бора — Зоммерфельда, только рождались ныне очевидные различия между механикой движения больших тел (макрообъектов) и малых, типа атомов, электронов, протонов (мик-рообъектов), а также между механикой движения с малыми и очень большими скоростями, сравнимыми со скоростью света. [c.199]

    Одной из новых идей, положенных в основу атомной модели Резерфорда п Бора, является представление о дискретности уровней энергии. Атом, находящийся в устойчивом состоянии, не приобретает и не теряет энергии. Потеря или ириобретепие энергии происходит только в результате перехода из одного стационарного состояния в другое. Косвенным доказательством этого может служить соответствие между данными опыта и теори- [c.111]

    Таким образом, практически одновременно были предложены два предельных варианта химической связи ионная связь с полным разделением зарядов между атомами и ковалентная связь без разделения зарядов. Общим у обеих теорий было то, что в результате проявления химических сил вокруг каждого из реагирующих атомов предполагалось образование устойчивого октета из восьма внешних электронов, характерного для ближайшего к атому инертного газа. При образовании ионной связи водородный атом превращался в протон, а у лития, бериллия и бора возникала устойчивая гелиевая конфигурация из двух электронов. [c.198]


Смотреть страницы где упоминается термин Бора теория атома: [c.73]    [c.59]    [c.505]    [c.373]    [c.134]    [c.229]    [c.17]   
Физическая химия (1987) -- [ c.592 ]

Ионизованные газы (1959) -- [ c.62 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.306 , c.310 , c.312 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.306 , c.310 , c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Атомные спектры. Спектр водорода. Кванты энергии. Теория Бора Энергия ионизации атомов водорода и других атомов

Бора орбиты теория атома водорода

Бора теория строения атома

Основы теории Бора и векторная модель атомов

Планетарная модель . 2.2.2. Атомные спектры . 2.2.3. Квантовая теория света . 2.2.4. Строение электронной оболочки атома по Бору Предположение де Бройля

Строение атомов и периодическая система элементов Теория строения атома водорода по Бору

Теория Бора

Теория Бора для атома водорода

Теория строения атома водорода Нильса Бора

Теория строения атома водорода по Бору



© 2025 chem21.info Реклама на сайте