Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бора модель атома водорода

    Следуя теории Бора для атома водорода, Зоммерфельд предложил такое правило квантования, что при его применении к атому водорода модель Бора не противоречит волновой природе электрона, постулированной де Бройлем. Вывести выражение для уровней энергии атома водорода, используя правило Зоммерфельда, согласно которому разрешенные электронные орбитали представляют собой окружности с длиной, кратной длине волны электрона. [c.405]


    Так как квантовые числа I, т и не вносят ничего в энергию электронного состояния, то все возможные состояния в данном) радиальном уровне энергетически равны. Это значит, что в спектре будут наблюдаться только единичные линии, такие, как предсказывал Бор. Однако хорошо известно, что в спектре водорода существует тонкая структура, изучение которой было толчком к развитию теории Бора — Зоммерфельда для атома водорода. Очевидно, что простая форма волнового уравнения не вполне адекватно описывает атом водорода, и, таким образом, мы находимся в-положении, лишь немного лучшем того, когда опирались на модель атома Бора. [c.70]

    В 1910 г. датский ученый Н.Бор, используя модель Резерфорда и теорию Планка, предложил модель строения атома водорода, согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешенным орбитам, на которых электрон обладает определенными энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде квантов. Каждая орбита имеет номер и (1, 2, 3, 4,. ..), который назвали главным квантовым числом. Бор вычислил радиусы орбит. Радиус первой орбиты был 5,29-10 м, радиус других орбит был равен  [c.19]

    При развитии модели строения атома водорода Бору необходимо было преодолеть прежде всего внутренние противоречия, которые имели место в планетарной модели атома. По представлениям классической электродинамики вращающийся электрон должен непрерывно излучать энергию в виде электромагнитных волн. Отсюда следует, что электрон должен упасть на ядро, а также при непрерывном излучении спектр водорода должен быть сплошным, т. е. содержать линии, отвечающие всевозможным длинам волн. Однако, как известно, атом водорода устойчив и спектр его имеет дискретную структуру (рис. 3.5). Отсюда можно было заключить, что механические и электрические свойства макроскопических тел не могут служить моделью для такой микросистемы, как атом водорода (а также вообще микросистем). Бор вынужден был искать новую модель, которая не противоречила бы известным фактам. [c.53]

    Рассчитаем величину электронной поляризуемости, индуцируемой в атоме водорода при действии электрического поля. Используем модель Бора. Тогда атом водорода имеет такие параметры ке = Яр = 156 10 Кл, т.р = 1,67- 10 кг, Ше = 9,11 10 кг, Гат = 0,53 А = 0,53 10 ° м, внутриатомное поле Ег = 5-10 Б/м. [c.149]


    Атомная модель Бора с центральным тяжелым ядром, использующая квантовую гипотезу Планка, позволяет объяснить известные спектральные серии водорода. Атом Бора суммарно может быть характеризован следующим образом  [c.24]

    Атом водорода. Первая количественная теория атома была разработана Бором для наиболее простого из атомов — атома водорода. В 1913 г. он опубликовал результаты теоретического расчета модели атома водорода, прекрасно подтверждающиеся экспериментальными данными о спектре водорода. Теория эта основывалась на некоторых допущениях (постулатах), которые нельзя было тогда доказать, но правильность их подтверждалась данными опыта. Позднее в несколько другой интерпретации эти постулаты получили обоснование в выводах квантовой механики. Указанные постулаты могут быть сведены к следующему  [c.34]

    Б которых расстояние между атомами водорода, принадлежащими различным атомам бора, было менее 2 А, и все модели, у которых при соприкосновении двух одинаковых молекул атом бора оказывается направленным к атому водорода одной из соприкасающихся молекул все межмолекулярные контакты должны осуществляться за счет соприкосновения атомов водорода. Предполагалось, что соединения, которые не удовлетворяют указанным выше [c.112]

    Первый постулат Бора. Бор предложил гипотезу о существовании стационарных состояний, в которых притяжение электрона к ядру точно уравновешивается центробежной силой. В этих состояниях электроны могут оставаться неопределенное время, не теряя энергии. Для каждого из стационарных состояний Бор рассчитал радиус круговых орбит, скорость движения электрона и величину энергии. На рис. 5 представлена модель атома водорода по Бору. На рисунке видно, что каждому стационарному состоянию электрона соответствует характеристика, названная главным квантовым числом, обозначаемым буквой я. Главное квантовое число определяет основную характеристику электрона в ато- [c.37]

    В этом разделе мы привели пример, позволяющий судить о том, как развивается наука. На основании широкой применимости законов классической механики и электродинамики ученые, естественно, решили, что эти же законы без изменения можно применить и к атому. По существу это было экстраполяцией, так как законы были выведены для макроскопических тел. Но, с другой стороны, если законы, описывающие движение планет, описывают и движение теннисного мяча, то почему бы их не применить к движению электронов Многие экспериментальные факты отрицали возможность этого, но физики надеялись, что будет найден путь для объяснения этих фактов в рамках известных (и казавшихся неопровержимыми) законов. Хотя Бор в конце концов отказался от традиционных представлений, он все же в какой-то мере руководствовался ими, предлагая произвести только те изменения, которые были необходимы для объяснения противоречивых фактов. Вероятно, наиболее примечательно то, что основным оружием Бора в борьбе за его теорию был точный математический расчет уровней энергии атома водорода, хотя его модель теперь отвергается полностью. Модель, которой он пользовался, соответствовала только атому водорода и не подходила ни к одному другому атому. [c.388]

    Н. Бор в 1913 г. впервые четко сформулировал вывод, что классическая электродинамика недостаточна для описания систем атомного размера [42]. Этот вывод привел его к разработке квантовой теории строения атома водорода в качестве первого шага и далее — к построению формальных моделей атомов всех элементов периодической системы. Применив к атомной теории постоянную Планка, Бор сформулировал два основных постулата 1) атом может существовать, не излучая, в определенных стационарных состояниях, характеризующихся определенными [c.247]

    В химии существует целая иерархия моделей. Часто встречающаяся в химических текстах латинская буква Н символизирует атом водорода. И доя многих задач более сложной модели не требуется, хотя известно, что модель Резерфорда—Бора описывает гораздо больше свойств атома элемента № I. [c.135]

    Основным аргументом в пользу теории Бора был математический расчет уровней энергии атома водорода и объяснение п р и-роды спектра. Модель атома, предложенная Бором, отражала структуру только простейшего атома — водорода и не подходила ни к какому другому атому. Теперь она представляет только исторический интерес. [c.55]

    Датский физик Бор внес в планетарную модель атома Резерфорда квантовые представления и объяснил происхождение линейчатых спектров атомов. Его теория строения атома водорода основывается на двух посту- атах. [c.46]

    В значительной степени противоречия ядерной модели Резерфорда были устранены датским физиком Н. Бором, который в 1913 г. разработал теорию атома водорода. При этом он допустил что раз атом устойчив, значит есть в атомном пространстве орбиты, двигаясь по которым, электрон не теряет энергии, поэтому и не падает на ядро. Теория строения атома водорода была основана на законе классической механики о сохранении энергии и на квантовой теории излучения. [c.34]


    Представим себе очень большое число атомов водорода с электронами в виде светящихся точек. Если бы мы в некоторый момент сфотографировали все эти атомы на одной и той же пластинке и так, чтобы ядро всегда попадало на одну и ту же точку, то получили бы на фотографии сплошное светлое облако переменной интенсивности. Максимумы его на этих фотографиях представились бы в виде эллипсов, совпадающих с орбитами Бора. Если бы атом в действительности отвечал модели Бора, то на фотографии мы имели бы резко очерченные эллипсы на совершенно темном фоне. Так как в данном случае силы не зависят от времени, то такой же результат дало бы многократное фотографирование одного единственного атома через быстро следующие промежутки времени. В обоих случаях мы получаем среднюю статистическую картину, которая вполне отвечает тому, что мы наблюдаем на действительных атомах, так [c.73]

    Сопоставление импульсов электрона в атоме водорода в различных состояниях атома планетарная модель Бора и квантовомеханический атом [c.22]

    Дальнейшее совершенствование модели атома водорода Бора. В модели Бора электроны движутся только по круговым орбитам. Но так как атом Бора по существу представляет планетарную систему, в которой движение, согласно законам Кеплера, происходит по эллипсам, то естественно, что усовершенствование модели Бора должно было состоять в переходе к движению электрона по эллипсам, тем более, что модель Бора не могла объяснить все детали спектра водорода. Это было сдаЛэно Зоммерфельдом (1915 г.). [c.19]

    Примерно в 20% всех случаев термолизованный, т, е. замедленный до тепловых скоростей, позитрон присоединяет к себе электрон, образуя так называемый позитроний — Ps-систему, аналогичную атому водорода, в которой, однако, ядро заменено позитроном. Если рассматривать- эту систему на основе планетарной модели водородоподобного атома (модель Н. Бора), то ясно, что в отличие от атома водорода, где электрон практически вращается вокруг гораздо более тяжелого протона, данная система будет вращаться вокруг общего центра тяжести, находящегося посередине. [c.105]

    Из возможных групп атомов простейшей является так называемая водородная молекула-ионНо , состоящая из двух водородных ядер и одного орбитального электрона, который осупхествляет связь между ними. По Бору, атом водорода состоит из ядра, вокруг которого с постоянной скоростью вращается электрон по круговой орбите радиуса 0,529 А. В волновомеханической модели поведение электрона характеризуется функцией ф, а круговая орбита заменена функцией вероятности ф- (4иг-с1г), дающей вероятность нахождения электрона на расстоянии между г н г-г-йг от ядра. Изменение ф и ф2 (4тиг2 г) с расстоянием г показано на рис. 5(а). Функция вероятности возрастает до максимальной величины на расстоянии около 0,5 А от ядра, которое являлось радиусом круговой орбиты в первоначальной атомной [c.71]

    Применимость каждой модели, если она не отвечает реальности, ограничена. Рано или поздно, при дальнейшем развитии науки, такая модель перестает быть плодотворной и наталкивается на Гфотиворечия с опытом. Так было. с моделью абсолютно твердого эфира и так было позже с моделью атома Бора. Она оказалась недостаточной для детального описания тонкой структуры спектров, даже в таком сравнительно простом случае, как атом водорода. Тем не менее, в известных границах простая и наглядная модель атома Бора может и должна быть сохранена, как достаточное для многих случаев приближение. Другая уязвимая сторона теории Бора заключается в том, что в ее основе лежат два произвольные постулата, оправдание которых находится лишь в их согласии с опытом. При дальнейшем развитии учения о спектрах они оказались недостаточными для объяснения всех опытных данных и их пришлось дополнить другими, столь же произвольными коррективами в виде спина электрона, правил запрета и т. д. [c.102]

    Во многих учебниках химии мы находим понятия, которые происходят от корпускулярных представлений о строении атома (атомная модель Бора) и которые затрудняют понимание законов квантовой химии. Например, понятия круговая или эллипсоидная траектория электрона мы хотели бы вообще не применять. Однако понятия электронная оболочка или тболочка , как мы видим, остаются полезными и при квантовомеханической трактовке атома. Эта глава служит непосредственным продолжением гл. 3. Сначала мы проанализируем состояния одного электрона в сферически симметричном поле, т. е. атом водорода и его возбужденные состояния. Прежде всего сделаем краткий обзор результатов экспериментальных исследований, особенно в области атомной спектроскопии. [c.46]

    Модель атома водорода, предложенная Н. Бором (1913 г.), является первой попыткой количественного изображения строения и внутреннего механизма атома, поясняющая все экспериментальные данные, главным образом частоты линий испускаемых спектров. Атом водорода изображен в виде солнечной системы в миниатюре, в которой солнде представлено протоном с элементарным зарядом -fe, а планета — электроном с элементарным зарядом —е, вращающимся вокруг протона по круговой орбите радиуса г. Согласно закону Кулона, между этими двумя частицами развивается сила притяжения В своем дви- [c.57]

    Модель атома водорода, предложенная Н. Бором (1913 г.), является первой попыткой количественного изображения строения и внутреннего механизма атома, поясняющая все экспериментальные данные, главным образом частоты линий испускаемых спектров. Атом водорода изображен в виде солнечной системы в миниатюре, в которой солнце представлено протоном с элементарным зарядом - -е, а планета — электроном с элементарным зарядом —е, вращающимся вокруг протона по круговой орбите радиуса г. Согласно закону Кулона, между этими двумя частицами развивается сила притяжения е 1г . В своем движении по орбите электрон остается в равновесии благодаря центробежной силе, которая долнша равняться силе притяжения между частицами, следовательно, [c.57]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]


Смотреть страницы где упоминается термин Бора модель атома водорода: [c.66]    [c.49]    [c.67]    [c.51]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.21 ]

Физическая и коллоидная химия (1960) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера, содержание инертных газов Атом водорода модель Бора

Атом водорода, модель Бора квантовое число

Атом водорода, модель Бора спектр, линии

Атом водорода, модель Бора уровни энергии

Бора в атоме водорода

Бора модель атома водорода атома водорода

Бора модель атома водорода атома водорода

Бора модель атома водорода квантовомеханическая модель

Бора модель атома водорода планетарная модель

Модель атома

Электронная модель атома водорода по Бору



© 2025 chem21.info Реклама на сайте