Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейроны деполяризация мембраны

    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]


    Нейроны, как и все живые клетки, обладают свойством электрической полярности за счет работы (На ,К )-насоса внутренняя поверхность мембраны нейрона заряжена отрицательно относительно ее наружной поверхности. В результате устанавливается динамическое равновесие, при котором электрохимический трансмембранный градиент равен нулю, а распределение зарядов неравномерно на внутренней поверхности мембраны образуется избыток отрицательных зарядов, снаружи — избыток положительных, т. е. возникает транс мембранная разность электрических потенциалов — потенциал покоя, величина которого составляет 60 — 70 мВ. Присоединение нейромедиатора открывает мембранные каналы, что позволяет ионам Ка беспрепятственно и в больших количествах проникать внутрь клетки. В результате всего за 0,001 с внутренняя поверхность нейрона оказывается заряженной положительно. Это кратковременное состояние перезарядки нейрона называется потенциалом действия, или нервным импульсом (рис. 16.3). Потенциал действия достигает 50—170 мВ таким образом, общая амплитуда изменения потенциала от значения в состоянии покоя до максимального значения при раздражении нерва составляет примерно 100—150 мВ. В форме потока ионов Ка" деполяризация распространяется вдоль аксона как волна активности. По мере распространения волны деполяризации участки аксона претерпевают также последовательную реверсию. [c.460]

    Как происходит высвобождение нейромедиатора Путем изучения миниатюрных потенциалов концевых пластинок удалось установить, что высвобождение медиатора идет квантами , т. е. путем полного опорожнения каждого отдельного пузырька. Миниатюрные потенциалы представляют собой флуктуации постсинаптического потенциала, наблюдаемые при слабой стимуляции пресинаптического нейрона. Эти флуктуации соответствуют случайному высвобождению медиатора из отдельных синаптических пузырьков [42]. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора — количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Какие химические процессы стимулируют высвобождение нейромедиатора Видимо, деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов кальция в клетку [43, 44]. Временное увеличение внутриклеточной концентрации Са + стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно четыре нона кальция. Синаптические пузырьки покрыты оболочкой, напоминающей по структуре решетку и образованной одним белком — клатрином (мол. вес. 180 000). Каково значение этой оболочки, пока еще неясно. [c.331]


    Положительная обратная связь редко встречается в биологических системах, поскольку она приводит к нестабильности системы и экстремальным состояниям. В этих ситуациях возникшее возмущение вызывает такие последствия, которые еще более его усиливают (рис. 19.2). Например, во время распространения нервного импульса деполяризация мембраны нейрона повышает ее проницаемость для ионов натрия. Проникая в аксон через мембрану, ионы натрия усиливают деполяризацию, а тем самым и собственное поступление в клетку. Скорость этого поступления стремительно возрастает, и в результате генерируется потенциал действия. В данном случае положительная обратная связь служит для усиления ответа системы (деполяризации). Величину этого ответа ограничивают другие механизмы, описанные в разд. 17.1.1. Положительная обратная связь функционирует также во время родов, когда гормон окситоцин стимулирует сокращения матки, а они в свою очередь инициируют вьщеление новых порций этого гормона (разд. 21.8.12). [c.402]

    Синергизм в действии протеинкиназ В и А в нервной ткани проявляется также при потенцировании цАМФ-индуцируемых входящих токов внутриклеточными ионами Са. Повышение внутриклеточной концентрации цАМФ в нейронах виноградной улитки приводит к деполяризации мембраны, а в условиях фиксации потенциала — к возникновению ионного тока по каналам пассивной проницаемости. Увеличение внутриклеточной концентрации Са " " приводит к значительному увеличению амплитуды и длительности цАМФ-тока. [c.354]

    Рис. 34 иллюстрирует последовательность процессов, обеспечивающих выделение нейромедиатора из пресинаптического окончания. Потенциал действия, инициированный в теле нейрона, распространяется вдоль аксона и поступает в область синапса. Временная деполяризация мембраны открывает по- [c.100]

    Второй способ действия рецепторов состоит в том, что они открывают или закрывают регулируемые ионные каналы плазматической мембраны. Здесь возможны два механизма создания сигнала 1) изменение в состоянии каналов порождает небольшой и непродолжительный ток ионов, что приводит к кратковременному изменению мембранного потенциала 2) открытие каналов приводит к значительному притоку ионов в цито юль, что, в свою очередь, вызывает внутриклеточную реакцию. Первый механизм работает главным образом в электрически активных клетках, например в нейронах и мышечных волокнах. Так, большинство нейромедиаторов регулирует мембранный потенциал постсинаптической клетки, открывая или закрывая ионные каналы ее плазматической мембраны падение мембранного потенциала ниже определенного порогового уровня вызывает взрывную деполяризацию мембраны (потенциал действия), которая быстро распространяется по всей мембране постсинаптической клетки. Изменения мембранного потенциала не сопровождаются за.метными изменениями концентраций ионов в цитозоле, так что исходный сигнал, полученный постсинаптической мембраной, не превращается в истинный внутриклеточный сигнал до тех пор, пока распространяющийся потенциал действия не дойдет до нервного окончания. Плазматическая мембрана нервного окончания содержит потенциалзависимые каналы для Са " . Вызванная потенциалом действия временная деполяризация мембраны открывает эти каналы, и ионы кальция устремляются внутрь окончания вниз по своему очень электрохимическому градиенту, выполняя роль вторичного посредника, запускающего секрецию нейромедиаторов. [c.56]

    Сигнал, приходящий к данному вставочному нейрону от соседних, понижает этот потенциал (примерно с 70 до 60 мв). Когда снижение потенциала достигает основания аксона, происходит резкое изменение проницаемости мембраны аксона. Ионы калия при этом выходят из внутренних частей аксона, а ионы натрия движутся из внешней среды в аксон. Разность потенциалов изменяется очень значительно вместо — 70 мв она приобретает небольшое положительное значение. Последующее смещение ионов приводит к тому, что участок, соседний с данным, деполяризуется, в то время как исходный в течение нескольких миллисекунд восстанавливает свое состояние. Зона деполяризации движется вдоль аксона со скоростью, зависящей от ряда факторов, в том числе от диаметра самого аксона (толстые аксоны проводят импульсы быстрее тонких) скорость лежит в пределах от 1 до 100 м/сек. [c.228]

    Некоторые нейромедиаторы оказывают не возбуждающее, а тормозное действие на нейроны, приводя к гиперполяризации, а не к деполяризации постсинаптической мембраны. При этом внутри клетки увеличивается отрицательный заряд, и затрудняется достижение пороговой деполяризации, необходимой для генерирования потенциала действия по принципу все или ничего . [c.288]

    Одной из давно замеченных особенностей глии является то, что она содержит относительно высокие концентрации ионов калия, и глиальная мембрана менее проницаема для других ионов. При прохождении нервного импульса происходит освобождение из нейронов в межклеточную щель значительных количеств К , который, однако, не накапливается вокруг нейронов. Глия выполняет роль буфера, способного защитить нейроны от чрезмерных влияний друг на друга, связанных с освобождением калия. Кроме того, вызываемая ионами К деполяризация ведет к активации ферментов в глиальных клетках, в результате чего они начинают вырабатывать биохимические компоненты или их предшественники, необходимые для поддержания метаболизма нейрона на нужном уровне во время его активности или нормального протекания последующего восстановительного периода. [c.194]


    Во многих нейронах, хотя и не во всех (важное исключение составляют миелинизированные аксоны млекопитающих), возвращение к состоянию покоя ускоряется благодаря потенциал-зависимым калиевым каналам в плазматической мембране. Эти каналы, подобно натриевым, открываются в ответ на деполяризацию мембраны, но происходит это отноо1тельно медленно. Повышение проницаемости мембраны для ионов К как раз в то время, когда натриевые каналы инактивируются, позволяет быстро сдвинуть мембранный потенциал до равновесного потенциала К и тем самым вернуть мембрану в состояние покоя (рис. 18-18). В результате реполяризации мембраны калиевые каналы вновь закрываются, а натриевые могут теперь выйти из состояния инактивации. Таким образом, клеточная мембрана меньше чем за одну миллисекунду вновь приобретает аюсобность отвечать на деполяризующий стимул [c.85]

    Передача электрических сигналов нервной клеткой основана на изменении мембранного потенциала в результате прохождения относительно небольшого числа ионов через мембранные каналы. Эти ионы перемещаются за счет энергии, большой запас которой создаежя благодаря работе Ыа К -АТРазного насоса, поддерживающего более низкую концентрацию N0 и более высокую концентрацию К внутри клетки по сравнению с наружной средой. В покоящемся нейроне каналы избирательной утечки К делают мембрану более проницаемой для калия, чем для других ионов, и поэтому мембранный потенциал покоя близок к равновесному потенциалу К, составляющему примерно - 70 мВ. Внезапная деполяризация мембраны изменяет ее проницаемость, так как при этом открываются потенциал-зависимые натриевые каналы. Но, если деполяризованное состояние поддерживается, эти каналы вскоре инактивируются. Под влиянием мембранного электрического поля отдельные каналы совершают резкий переход от одной из возможных конформаций к другой. Потенциал действия инициируется тогда, когда под влиянием короткого деполяризующего стимула открывается часть потенциал-зависимых натриевых каналов, что делает мембрану более проницаемой для Ыа и еще дальше смещает мембранный потенциал по направлению к равновесному натриевому потенциалу. В результате такой положительной обратной связи открывается еще больше натриевых каналов, и так продолжается до тех пор, пока не возникнет потенциал действия, подчиняющийся закону всё или ничего . Потенциал действия быстро исчезает вследствие инактивации натриевых каналов, а во многих нейронах также и открытия потенциал-зависимых калиевых каналов. Распространение потенциала действия (импульса) по нервному волокну зависит от кабельных свойств этого волокна. Когда при импульсе мембрана на некотором участке деполяризуется, ток, проходящий здесь через натриевые каналы, деполяризует соседние участки мембраны, где в свою очередь возникают потенциалы действия. Во многих аксонах позвоночных высокая скорость и эффективность проведения импульсов достигается благодаря изоляции поверхности аксона миелиновой оболочкой, оставляющей открытыми лишь небольшие участки возбудимой мембраны. [c.92]

    В принципе быстрые калиевые каналы функционируют таким же образом, как н потенцнал-зависимые натриевые они быстро открываются при деполяризации мембраны н затем полностью инактивируются. Но в отличие от натриевых быстрые калиевые каналы медленнее выходят из состояния инактивации, и для этого требуется возвращение мембранного потенциала к еще более отрицательному уровню. Трудно предугадать состояние мембраны на основе простых качественных соображений, но полный математический анализ функции нейронов одного илн двух типов показал, что вся сложная последовательность актов открытия, закрытия н инактивации потенциал-зави-симых каналов обеспечивает пропорциональность между частотой разряда н силой деполяризующего стимула в очень широком диапазоне (рис. 18-37). Вероятно, во многих нейронах такого рода градуальное изменение частоты разряда достигается таким же путем. [c.109]

    Согласно ионной теории возбуждения (E les, 1964 Katz, 1971, и др.), транспорт ионов через нейрона,льные мембраны лежит в основе генерации разности потенциалов и их изменений в процессе поляризации, деполяризации и гинерполяризации, что в совокупности и составляет нейрофизиологическую основу активности ЦНС. [c.109]

    Здесь необходимо вновь вернуться к вопросам терминологии. Понятия возбуждающий и тормозный были первоначально введены для обозначения процессов, способствующих или препятствующих генерации нервных импульсов. Однако в дальнейшем мы увидим, что некоторые нейроны не генерируют потенциалов действия. В таких нейронах не происходит преобразования синаптических потенциалов в импульсы напротив, потенциалы этих нейронов либо прямо, либо путем электротонического распространения активируют или подавляют местные синаптические процессы. Как можно применить нашу терминологию в подобных случаях Оказывается, существует одна удивительно постоянная закономерность во всех известных нам случаях выделение медиатора происходит только в результате деполяризации мембраны. В той мере, в которой эта закономерность универсальна, мы можем несколько расширить нашу терминологию ВПСП является возбуждающим потенциалом, поскольку он способствует генерации импульса и (ияи) высвобождению медиатора напротив, ТПСП является тормозным потенциалом, поскольку он препятствует этим процессам. [c.182]

    В некоторых клетках (например, в нейронах симпатических ганглиев) подобные гиперполяризующие потенциалы играют роль ТПСП. В других случаях (например, клетки сетчатки) роль этих потенциалов неясна. Синапсы, функция которых связана со снижением ионной проницаемости, обладают рядом особенностей. В этих синапсах гиперполяризация возникает в результате избирательного снижения проницаемости для ионов, поток которых сопровождается деполяризацией мембраны. Снижение проницаемости приводит к увеличению сопротивления мембраны при этом постоянная времени мембраны возрастает, и в результате изменения синаптических потенциалов во времени происходят медленнее. С точки зрения интеграции синаптических влияний важно, что подобные ТПСП не приводят к шунтированию тока (об этом шунтировании мы упоминали лри обсуждении рис. 8.5). [c.187]

    Потенциал-зависимые калиевые каналы так же, как и натриевые, распространены повсеместно в наружных мембранах нервных клеток и ифают столь же важную роль в передаче скоростных сигналов. В отличие от ионов натрия, которые вызывают локальную деполяризацию мембраны и генерирование потенциала действия, калиевые каналы приводят к гиперполяризации нейрона и появлению тормозных потенциалов. Система быстрых калиевых каналов ифает большую роль в стабилизации ритмической деятельности нейрона, которая является основным способом кодирования и передачи клеткой химических сигналов. Характерной чертой участия калиевьгх каналов в ритмической активности является резкое замедление нарастания деполяризации мембраны, вызванной предшествующим входом ионов Ка. [c.251]

    Концы тонких нервных волокон утолщаются в синаптические пуговки, которые образуют контакты с дендритами других нейронов. Как правило, появление нервного сигнала на пресинаптическом конце нейрона стимулирует высвобождение химического нейромедиатора (или нейрогормона). Медиатор проходит через синаптическую щель между двумя клетками (ширина щели 10—50 нм обычно 20 нм) и вызывает деполяризацию постсинаптической мембраны следующего нейрона [c.325]

    Нейроны характеризуются необыкновенно высоким уровнем обмена веществ, значительная часть которого направлена на обеспечение работы натриевого насоса в мембранах и поддержание состояния возбуждения. Химические основы передачи нервного импульса по аксону уже обсуждались в гл. 5, разд. Б, 3. Последовательное раскрытие сначала натриевых и затем калиевых каналов можно считать твердо установленным. Менее ясным остается вопрос, сопряжено ли изменение ионной проницаемости, необходимое для распространения потенциала действия, с какими-либо особыми ферментативными процессами. Нахманзон указывает, что ацетилхолинэстераза присутствует в высокой концентрации на всем протяжении мембраны нейрона, а не только в синапсах [38, 39]. Он предполагает, что увеличение проницаемости к ионам натрия обусловлено кооперативным связыванием нескольких молекул ацетилхолина с мембранными рецепторами, которые либо сами составляют натриевые каналы, либо регулируют степень их открытия. При этом ацетилхолин высвобождается из участков накопления, расположенных на мембране, в результате деполяризации. Собственно, последовательность событий должна быть такова, что изменение электрического поля в мембране индуцирует изменение конформации белков, а это уже приводит к высвобождению ацетилхолина. Под действием аце-тилхолинэстеразы последний быстро распадается, и проницаемость мембраны для ионов натрия возвращается к исходному уровню. В целом приведенное описание отличается от описанной ранее схемы синаптической передачи только в одном отношении в нейронах ацетилхолин накапливается в связанной с белками форме, тогда как в синапсах — в специальных пузырьках. Существует мнение, что работа калиевых каналов регулируется ионами кальция. Чувствительный к изменению электрического поля Са-связывающий белок высвобождает Са +, который в свою очередь активирует каналы для К" , последнее происходит с некоторым запозданием относительно времени открытия натриевых каналов, что обусловлено различием в константах скоростей этих двух процессов [123]. Закрытие калиевых каналов обеспечивается энергией гидролиза АТР. Имеются и другие предположения о механизмах нервной проводимости [124]. Некоторые из них исходят из того, что нервная проводимость целиком обеспечивается работой натриевого насоса. [c.349]

    Представим себе, что сильный и продолжительный деполяризующий стимул приводит к возникиовенню длинного залпа импульсов (рис. 18-38). В результате каждого импульса в клетку через потенциал-зависимые кальциевые каналы переходит небольшое количество нонов Са , так что внутриклеточная концентрация этих нонов постепенно поднимается до высокого уровня. В результате открываются Са -активируемые калиевые каналы и проницаемость мембраны для повышается, что затрудняет деполяризацию и увеличивает интервалы между последовательными импульсами. Таким образом, есж на нейрон длительно воздействует постоянный стимул, сила ответа постепенно снижается. Это явление называют адаптацией. Благодаря адаптации нейрон, так же как и нервная система в целом, способен с высокой чувствительностью реагировать на изменение стимула, даже еслн оно происходит на фоне сильной постоянной стимуляции. Это один из главных механизмов, благодаря которому мы, например, не замечаем постоянного давления одежды [c.109]

    РАСПРОСТРАНЕНИЕ (ПРОВЕДЕНИЕ) НЕРВНЫХ ИМПУЛЬСОВ, Нервный импульс представляет собой волну деполяризации, распространяющуюся по поверхности нейрона. Распространение происходит вследствие самогенерирования потенциалов действия за счет поступающих в аксон ионов натрия. Поступивщие ионы натрия создают зону положительного заряда внутри клетки, что приводит к возникновению локальной электрической цепи, по которой течет местный ток между этой и соседней отрицательно заряженной зоной. Местный ток снижает мембранный потенциал в этой зоне, и в результате деполяризации здесь повыщается проницаемость мембраны для натрия и в свою очередь генерируется потенциал действия. Последовательная деполяризация все новых и новых участков мембраны приводит к тому, что потенциал действия распространяется по аксону [c.284]

    Поступлению в дендрит ионов натрия через постсинаптическую мембрану вызывает ее деполяризацию (рис. 17.4, А). Если при этом достигается порог возбуждения, в нейроне генерируется потенциал действия, и нервный импульс распространяется дальше. Изменив проницаемость постсинаптической мембраны, ацетилхолин практически мгновенно удаляется из синаптической щели под действием фермента ацетилхолинэстеразы, иногда называемого просто холинэ-стеразой. Этот фермент локализован на постсинаптической мембране и гидролизует ацетилхолин до холина и остатка уксусной кислоты. В результате ионные каналы закрываются и синапс возвращается в исходное положение . Холин реабсорбируется синаптическим окончанием и вновь превращается в ацетилхолин в синаптических пузырьках (рис. 17.11). Некоторые нервно-паралитические газы, инсектициды и другие яды ингибируют ацетилхолинэстеразу, нарушая тем самым нервное проведение, о чем говорилось в разд. 4.4.3. [c.288]

    Все рецепторы представляют собой возбудимые клетки, т. е. подобно нейронам и мыщеч-ным волокнам они реагируют на соответствующий им сигнал быстрым изменением электрических свойств своей мембраны. В отсутствие стимуляции они сохраняют потенциал покоя, описанный в разд. 17.1.1. Сигнал вызывает изменение мембранного потенциала. Бернард Кац в 1950 г. при изучении сложного рецептора растяжения — мыщечного веретена — продемонстрировал его деполяризацию в области, прилегающей к окончаниям сенсорных нейронов. Такая местная деполяризация обнаруживается только в рецепторной клетке и называется генераторным потенциалом. Дальнейщие исследования с использованием микроэлектродов, введенных в рецепторные клетки мышечных ве- [c.316]

    Пусть, кроме того, в мембране этих нейронов есть еще два типа каналов кальциевые и калиевые. Кальциевые каналы открываются при деполяризации и сами по себе не закрываются, не инактивируются чтобы они закрылись, надо либо гиперполяризовать клетку, либо накопить в ней достаточно много кальция (такие каналы мы уже описывали в гл. 5). Калиевые же каналы устроены так, что они открываются под влиянием кальция, действующего с внутренней стороны мембраны, если его концентрация достигает некоторого порогового уровня. Пусть, наконец, ПП в —60 мВ является пороговым для кальциевых каналов. [c.218]

    Ранние этапы образования нервно-мышечного синапса проще всего наблюдать в культуре Здесь можно видеть, что значительная часть молекулярного механизма синаптической передачи существует еще до того, как конус роста достигнет мышечной клетки. По мере того как конус роста продвигается вперед, он при электрическом возбуждении тела нейрона выделяет небольшие количества ацетилхолина (рис. 19-75). Мембрана конуса роста уже содержит потенциал-зависимые кальциевые каналы для сопряжения электрического возбуждения с секрецией эти каналы служат тагсже для распространенггя нервных импульсов по эмбриональному нейриту (в котором поначалу нет натриевых каналов). Еще до того, как мышечная клетка иннервируется, она уже имеет ацетилхолиновые рецепторы (эмбрионального типа) и может реагировать на ацетилхолин деполяризацией и сокращением. [c.363]

    Связь между нейронами осуществляется в основном через посредство синапсов. Распространяющийся по аксону нервный импульс, или спайк, приходит к синаптическому окончанию и вызывает вьщеление из пресинаптической мембраны особого вещества — нейромедиатора, который изменяет проницаемость постсинаптической мембраны для определенных ионов. В результате возникает сдвиг потенциала на постсинаптической мембране, длящийся 15-20 мс и вызывающий изменение трансмембранного потенциала клетки, воспринимающей нервный импульс. В зависимости от типа синапса происходит увеличение поляризационного трансмембранного потенциала — гиперполяризация (для тормозных синапсов) или уменьшение этого потенциала — деполяризация (для возбудительных синапсов). Если сома деполяризована относительно денд 1та, то вследствие различия их трансмембранных потенциалов внутри клетки начинает течь ток в направлении дендрита, из которого он вытекает во внеклеточную среду, причем в области сомы ток [c.120]

    Система нейронов контролирует и координирует функции всех органов и поведение организма в целом. Нейроны относятся к семейству электрически возбудимых клеток. Кроме нейронов к этому семейству относятся клетки мускулатуры и эндокринные клетки. При деполяризации клеточной мембраны нейроны генерируют потенциал действия, или нервный импульс, который распространяется по аксону от одного нейрона к другому со скоростью до 100 м/с. Длина аксонов разных нейронов различается, но самая большая может достигать 1 м (Alberts et al., 1994). Причиной деполяризации клеточной мембраны могут быть разные физико-химические факторы, в том числе нейротрансмиттеры пептидного типа. [c.59]

    Итак, степень деполяризации или гиперполяризации мембраны зависит от противоборства между ионными проводимостями и токами, активируемыми при ВПСП и ТПСП. Кроме того, необходимо учитывать геометрические взаимоотношения между возбуждаюш,ими и тормозными синапсами, расположенными в различных участках дендритов, а также особенности электротонического распространения тока по этим дендритам. Таким образом, интеграция синаптических влияний обусловлена сложным взаимодействием между различным ионными каналами, а также геометрией нейрона (см. ниже). [c.184]

    В нервно-мышечных синапсах, в некоторых железистых клетках (нейрогипофиз, р-клетки поджелудочной железы) и других секретирующих клетках (лейкоциты, тучные клетки) район экзоцитоза имеет свою специфику. Плазмалемма в районе экзоцитоза содержит крупные конусообразные белковые внутримембранные частицы (7—12 нм), которые нередко в форме правильного двойного кольца обрамляют место слипания секреторных гранул. Морфологические исследования экзоцитоза в нейронах нейрогипофиза, мотонейронах спинного мозга, тучных клетках, в электрическом органе электрического ската показали, что в мембране, окружающей некоторые из экзоцитозных отверстий, резко снижено число малых белковых внутримембранных частиц (ВМЧ) диаметром 5—8 нм, которые в других участках мем--браны более многочисленны и равномерно распределены. В зоне слияния с мембраной гранул плазмалемма свободна от ВМЧ. Иа мембране синаптических пузырьков плотность больших ВМЧ ( 9—13 нм) совпадает с плотностью этих частиц на внутренней поверхности пресинаптической мембраны, а плотность малых частиц на мембране синаптических пузырьков в зоне контакта также снижается. В безкальциевой среде двойной ряд больших ВМЧ в нервно-мышечных синапсах исчезает. Этот факт указывает на то, что эти структуры преходящи, они пре- формируются в ходе деполяризации мембран терминалей. [c.79]

    Помимо электрического поля, ионные каналы могут управляться воздействием химических веществ. Некоторыми из них (ядами) каналы полностью блокируются. Другие оказывают временное влияние. Локальное химическое воздействие с помощью веществ, называемых медиаторами ( посредниками ), оказывает, например, одна нервная клетка (нейрон) на другую или же на мышечную клетку в месте их соприкосновения (синапсе). Изменение проводимости мембраны сопровождается сдвигом трансмембранного потенпдала от положения равновесия. Смещение в сторону деполяризации называется возбуждающим постсинаптическим потенциалом (ВПСП). Смещение в другую сторону, т.е. гиперполяризация, называется тормозным постсинаптическим потенциалом (ТПСП). Значения обоих отсчитываются от уровня равновесного потенциала. [c.85]


Смотреть страницы где упоминается термин Нейроны деполяризация мембраны: [c.327]    [c.25]    [c.308]    [c.308]    [c.176]    [c.104]    [c.108]    [c.289]    [c.136]    [c.324]    [c.93]    [c.121]    [c.74]    [c.183]    [c.93]    [c.231]    [c.324]    [c.363]    [c.331]   
Биохимия Том 3 (1980) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Деполяризация



© 2025 chem21.info Реклама на сайте