Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы изучения быстрых ионных реакций

    Методы изучения быстрых ионных реакций [c.322]

    Релаксационные методы пригодны для измерения констант скоростей реакций порядка Ю моль-мин, поэтому они могут быть применены для изучения быстрых ионных реакций, например реакции нейтрализации или гидролиза [21, 22] с периодом полупревращения 10 с. [c.24]

    Константы скорости различных ионных реакций, как и обычных химических реакций, сильно отличаются друг от друга (табл. 1У.4). Однако в целом ионные реакции относятся к числу быстрых процессов. Реакции рекомбинации ионов водорода с анионами кислотного остатка или с ионами гидроксила характеризуются наиболее высокими скоростями среди процессов, протекающих в жидкой фазе. Исследование быстрых ионных реакций потребовало разработки специальных экспериментальных методов. В частности, большое развитие получили так называемые струевые методы, когда смешиваются движущиеся с большими скоростями струи растворов, содержащих реагенты, и на некотором расстоянии от точки смешения при помощи специальной аппаратуры регистрируются концентрации реагирующих веществ. Применяют также различные импульсные методы, например флеш-метод, который состоит в освещении раствора в течение микросекунды интенсивной вспышкой света и последующих быстрых фотометрических измерениях. Ряд систем изучен фотохимическим и флуоресцентным методами, а также методами, [c.89]


    В растворителях с высокими диэлектрическими проницаемостями электролитическая диссоциация может протекать полностью и равновесная концентрация ионизованного комплекса будет пренебрежимо мала. Однако это не означает, что электролитный раствор мог образоваться, минуя стадию ионизации. Развитие методов изучения быстрых реакций показывает, что даже в растворителях с весьма высокими диэлектрическими проницаемостями (вода, серная кислота) возникновению свободных ионов неизбежно предшествует стадия ионизации. [c.114]

    Любой метод изучения интермедиатов включает фазы их генерации и детектирования, первая из которых в электрохимии всегда связана с электронным переносом, как правило, осуществляемым посредством электрохимической, реже фотохимической реакции. Перенос электрона с электрода на молекулу (ион) органического вещества приводит к образованию первичного продукта реакции и может инициировать ряд его дальнейших превращений, в ходе которых образуются вторичные продукты различной устойчивости. Способы детектирования возникающих промежуточных продуктов могут быть электроаналитическими, физическими (главным образом спектральными) или химическими и базироваться на различных принципах. При этом в одной группе методов процессы генерации и обнаружения промежуточных продуктов пространственно не разделены, в другой такое разделение существует, и между двумя названными фазами эксперимента находится еще одна — быстрая транспортировка исследуемых частиц от места их образования в зону аналитического определения. [c.197]

    Многие реакции с участием ионов, такие как ассоциация ионов, перенос электрона и протона, обмен лигандами, протекают очень быстро, и в системе устанавливается состояние равновесия. Для кинетического исследования таких систем был разработан ряд специальных методов. Их можно подразделить на три типа методы с быстрым однократным нарушением равновесного состояния системы, методы периодического физического воздействия на раствор, где протекает равновесный химический процесс, электрохимические методы изучения ионных реакций. [c.322]

    Некоторые особенности метода электропроводности обеспечили ему ряд специальных применений. Высокая точность позволила выбрать его для изучения кинетики реакций сольволиза, в частности вторичного изотопного эффекта [101]. Безынерционное слежение за изменением концентрации ионов обеспечило кондуктометрическим измерениям широкое применение при изучении быстрых реакций методами скачка температуры, скачка давления и остановленной струи. Ячейки для измерения электропроводности можно изолировать электрически, механически и термически, поэтому метод измерения электропроводности пригоден при изучении электролитов при высоких давлениях [49, 50, 117], расплавленных солей при высоких температурах и для непрерывного контроля за содержанием электролитов на производстве и в сточных водах. [c.61]


    Основное направление научных работ — исследование сверхбыстрых химических реакций разработанными им методами химической релаксационной спектрометрии. С помощью метода температурного скачка исследовал кинетику реакций ионов водорода и гидроксила с кислотно-основными индикаторами в водном растворе. Для изучения быстрых реакций в растворах слабых электролитов предложил метод наложения сильного электрического поля, увеличивающего степень диссоциации электролита. Благодаря применению созданных им методов, использующих периодическое возмущение системы, получены данные об образовании ионных пар и десольватации ионов в водных растворах электролитов, о реакциях переноса протона, о кинетике ассоциации карбоновых кислот в результате образования водородных связей и др. Изучал ферментативный катализ, механизм передачи информации и другие вопросы молекулярной биологии. [c.589]

    Если же метод анализа базируется на измерении скорости образования продукта реакции, то отличительными спектральными свойствами должен обладать именно продукт. Такому требованию удовлетворяют многие гидролазы, особенно те из них, которые не обладают строгой специфичностью к некоторым элементам структуры субстрата. Синтез хромогенных субстратов некоторых протеаз и фосфатаз, например, позволил использовать метод остановленного потока для изучения этих ферментов. Ионные реакции, особенно протонирование, протекают, к счастью, очень быстро. Поэтому для изучения струйным методом реакций, протекающих с образованием или потреблением протона, во многих случаях можно использовать индикаторные красители. Потенциальные возможности этого метода значительно расширяет так называемый метод закалки реакции в потоке . В этом методе растворы фермента и субстрата смешиваются так же, как и при использовании других струйных методов, но реакционная смесь поступает затем во второй смеситель (а не в фотометрическую ячейку), где она смешивается с химическим закаливающим реагентом (часто им служит сильная кислота),который очень быстро останавливает реакцию. При постоянной скорости потока время реакции в этом случае зависит только от расстояния между двумя смесителями. Закаленную реакционную смесь можно далее проанализировать любым подходящим методом. Этот способ [8—10] дает возможность изучать многие ферментативные реакции, для которых другие струйные методы оказываются неприменимыми. [c.184]

    Во-вторых, детальное изучение многих сложных химических реакций выявило важную роль активных промежуточных продуктов свободных атомов и радикалов в цепных реакциях, лабильных ионов и ион-радикалов в ионной полимеризации, возбужденных состояний молекул в фотохимических и радиационно-химических реакциях, лабильных комплексов в гомогенном катализе. Для изучения таких активных соединений, реагирующих очень быстро, в кинетике разработаны специальные методы и аппаратура. Можно с полным правом сказать, что современная экспериментальная кинетика есть в значительной своей части кинетика быстро реагирующих активных частиц. [c.367]

    ЯМР-спектроскопия представляет собой перспективный метод исследования. Она позволяет фиксировать образование промежуточных продуктов химических реакций (ионов, промежуточных комплексов, сольватов и др.). По интенсивности сигналов ЯМР в ходе не очень быстрых реакций уда -ется следить за изменением концентрации веществ. ЯМР-спектроскопия широко применяется для изучения скоростей и активационных параметров обменных процессов, при которых периодически меняется магнитное окружение ядер. [c.128]

    Исходя ИЗ данных, полученных при изучении изотопного обмена для этого фермента, было сделано предположение, что протон быстро удаляется, образуя карбанионное промежуточное соединение, распад которого является лимитирующей стадией [116]. Этот фермент функционирует, только находясь в комплексе с ионом металла [117], обычно Mg + и Мп +. Из данных по исследованию релаксации протонов воды, полученных методом ЯМР, следует, что ион Мп + образует координационные связи с двумя быстро обменивающимися молекулами воды в свободном ферменте [118]. При связывании субстрата одна из этих молекул воды может быть иммобилизована и участвовать в реакции присоединения. Фосфатная группа субстрата может выступать в роли общего основного катализатора, облегчая отрыв протона от молекулы воды [118]  [c.149]

    Обменные реакции с участием простых ионов идут с большой скоростью, лимитируемой практически только скоростью поступления исходных веществ в зону реакции. Поэтому при простом слиянии, а тем более перемешивании двух концентрированных растворов (пусть тех же СаСЬ и КР), почти мгновенно проходящая реакция образования СаРг приводит к образованию раствора этого вещества, по концентрации в сотни раз большей, чем концентрация насыщения. Вообще, малорастворимые соединения имеют очень большую ширину метастабильной зоны. Если же раствор достигает лабильной области, то происходит множественное зародышеобразование, приводящее к появлению мелкокристаллического, а то и коллоидного материала. Предотвратить это можно, либо существенно замедлив поступление исходных веществ в зону реакции, либо использовав растворы пониженной концентрации. Второй вариант более прост, поэтому начнем с него. Для целого ряда физических исследований достаточно иметь кристаллы с размерами, не превышающими десятые и сотые доли миллиметра. Для получения таких кристаллов [Мошкин С. В. и др., 1980] требуется всего лишь чашка Петри с крышкой и пара стеклянных полосок толщиной 1 —1,5 мм. Приготавливаются две порции исходных растворов объемом по 5 мл с такой концентрацией, чтобы при их слиянии, т. е. на объем 10 мл, создавалось пересыщение, соответствующее 300—500%, т. е. 3—5 концентрациям насыщения. Растворы сливаются в колбу, которая встряхивается 5—10 с, после чего раствор выливается в большую емкость чашки Петри (крышку) с положенными в нее заранее упомянутыми полосками стекла. Затем меньшая емкость, донной частью вниз, вводится внутрь большой и ставится на стеклянные полоски. Кристаллизация идет в растворе, находящемся в узкой щели между донными частями емкостей. Возникающие кристаллы способствуют быстрому снижению пересыщения и прекращению зародышеобразования. Отсутствие контакта раствора с воздухом также уменьшает вероятность возникновения зародышей сверх тех, которые возникли при смешении. Через несколько часов кристаллизация заканчивается, крышка вынимается, раствор осторожно сливается, а его остатки оттягиваются фильтровальной бумагой. Без извлечения кристаллов этот метод успешно используется для изучения под микроскопом особенностей кристаллизации, в частности, гипса. [c.88]


    Этот метод был успешно применен [258] для определения констант скорости диссоциации (и рекомбинации) ряда слабых кислот по току разряда ионов водорода, образующихся при диссоциации молекул кислот. Использование весьма короткого импульса, продолжительностью около 10 сек., позволяет применить метод для изучения очень быстрых реакций [см. неравенство (35), в котором i в данном случае означает продолжительность импульса]. ]Метод этот требует, однако, использования чрезвычайно сложной электронной аппаратуры. [c.52]

    Конуэй и Ви использовали стационарные и нестационарные электрохимические методы для изучения кинетики окисления уксуснокислого калия на платиновых анодах в безводной уксусной кислоте [18] и воде [19]. Они пришли к выводу, что при тщательном удалении воды разряд ацетат-иона с образованием адсорбированных ацилокси-радикалов [см. уравнение (4.2)] является стадией, определяющей скорость реакции. Затем быстро отщепляется двуокись углерода и происходит димеризация адсорбированных метальных радикалов, за которой следует десорбция димера. Они рассчитали стандартный обратимый электродный потенциал для всей реакции, который оказался равным —0,396 В отн. нас. к. э. в воде или в уксусной кислоте  [c.135]

    Метод температурного скачка. Температура реакционной ячейки меняется на 2—10 К за 10 с вследствие разряда высоковольтного конденсатора, заряженного до напряжения 100 кВ (рис. 28). За достижением равновесия следят по изменению электрической проводимости при помощи мостика Уитстона и осциллографа или спектрофотометрически, Время релаксации, доступное измерению, лежит в диапазоне 1 — Ю" с, /г ,ах 10 л/(моль-с).. Метод применялся для изучений быстрых ионных реакций. Необходимо, чтобы равновесие зависело от температуры (ДЯ должна быть достаточно большой величиной). [c.346]

    Предельное значение для констант скорости второго порядка в условиях, когда скорость реакции лимитируется диффузией, составляет приблизительно Ю М -с (разд. А, 7). В 1956 г. Эйген [54], разработавший новые методы изучения быстрых реакций, сделал удивительное открытие, обнаружив, что протоны и гидроксильные ионы взаимодействуют гораздо быстрее, находять в решетке льда, чем в растворе константы скорости второго порядка составляли 10 —Ю М -с . Соответствующие им скорости реакции так же высоки, как скорости молекулярных колебаний например, частота колебаний ОН-связи в воде ) составляет примерно 10 с . Объясняется этот факт, по-видимому, следующим. ОН -ион и протон, который присоединяется к молекуле воды с образованием иона НзО+, связаны водородными связями с соседними молекулами воды. Поскольку во льду водородными связями соединены все молекулы воды, гидроксильные и водородные ионы оказываются соединенными цепочкой из молекул воды  [c.56]

    Деполяризатор, таким образом, претерпевает на электроде обратимые превращения (если, конечно, это возможно для данного деполяризатора), т. е. после восстановления он вновь окисляется или же наоборот (рис. 256). Одновременная запись кривой потенциал — время позволяет получить ценные сведения о характере электродного процесса [47, 86] анализ обеих кривых дает значения величины а, Па и констант для электрохимических реакций в обоих направлениях. Берзине и Делахей нашли теоретически и доказали экспериментально, что в случае обратимого электродного процесса с растворимыми продуктами время перехода для обратной реакции составляет одну треть времени перехода прямой реакции (ср. рис. 256). Драчка [87, 88] показал, что этот метод особенно удобен для изучения быстрых последующих реакций. Тот же метод для исследования последующих реакций был независимо применен Фурлани и Марпурго [89]. Геске [90], а также Кинг и Рэйли [91 ] применили его для исследования анодного окисления циклогептатриена до иона тропилия ряд органических реакций был изучен подобным же методом Енике и Гофманом [92, 93]. [c.486]

    Быстрые ионные окислительно-восстановительные реакции изучаются теми же методами, что и реакции свободных радикалов (гл. IV) методом конкурирующих реакций (МКР), струевымк методами (СМ), методом импульсного радполиза (ИР), флепг-мето-дом (ФМ), методами ЭПР и ЯМР. Для изучения быстрых ионяых реакций применяется также метоп температурного скачка (ТС) [c.561]

    Чтобы подтвердить положение, сформулированное в пункте 1, Льюис и Сиборг [47] рассмотрели кинетику реакций кислот и оснований на примере поведения иона тринитрофенилметила в кислых растворах Килпатрик в дальнейшем предложил другую кинетическую трактовку этой реакции, рассматривая ее как пример общего кислотного катализа. Положение Льюиса о том, что реакция первичных кислот и оснований не требует теплоты активации, должно быть предметом дальнейшего экспериментального исследования с применением новых методов изучения быстрых реакций. Кислотно-основные реакции, указанные в пункте 2, требуют теплоты активации, но Льюис считает, что для реакции [c.74]

    В химической кинетике при изучении быстрых реакций и химических процессов в экстремальных условиях нашли широкое применение разнообразные физические методы исследования. Для обработки результатов измерения и решения разнообразных теоретических задач, включая квантово-химические расчеты, используют ЭВМ. Возвра-стает роль сложных физико-математических моделей, детально описывающих предреакционное состояние реагирующих частиц, особенно короткоживущих промежуточных частиц, таких, как свободные радикалы, ион-радикалы, возбужденные состояния молекул. [c.3]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Можно констатировать, что очень высокие скорости полимеризации в сочетании с экзотермичностью процесса (Яжж 54 кДж/моль) создают ситуацию, при которой даже очень медленное введение инициатора и быстрое перемешивание недостаточны для отвода выделяющегося в реакции тепла. В общем случае реакция полимеризации ИБ начинается еще до того, как инициирующие частицы успевают продиффундировать достаточно далеко. Даже с помощью скоростной киносъемки ( 3 ООО кадр/с) не удалось установить, каков промежуток времени между попаданием капли раствора А1С1з на поверхность ИБ (при 195 К) и появлением полимера. Отсюда следует, что в этих, да и многих других весьма быстрых ионных и неионных системах, не обеспечивается равномерность распределения реагентов и температуры в реакционном объеме, а это означает, что на практике процессы катионной полимеризации ИБ и другие подобные им весьма быстрые химические реакции трудно управляемы. Это обстоятельство требует поиска и разработки новых подходов к кинетическому изучению быстрых процессов полимеризации (да и другргх быстрых реакций), а также методов управления этими процессами непременно с использованием уравнений химической кинетики, теплоотдачи, диффузии и конвекции. [c.115]

    При тщательном исследовании строения анионных а-комплексов с помощью методов, пригодных для изучения быстрых реакций, было установлено, что во многих случаях анионному 1,1-ст-комплексу (илсо-комплексу) предшествует другой, изомерный ему ст-комплекс. В этом юомерном ст-комплексе нуклеофильный агент находится при незамещенном атоме углерода в мета-положении по отношению к уходящей группе. Такой комплекс впервые был зафиксирован при взаимодействии 2,4,6-тринитроанизола с метилат-ионом в ДМСО  [c.596]

    Скорости обмена лигандов. Поскольку лиганды являются основаниями Льюиса, то реакции их замещения являются реакциями нуклеофильного замещения (Зы) в лигандной сфере центральных ионов. Изучение механизмов органических реакций началось примерно с 1950 г., и по мере развития методов измерения скоростей быстрых реакций накопились многочисленные данные 9 реакциях в лигандной сфере различных металлических ионов. На рис. 4.15 приведены данные о скоростях обмена координационной воды на молекулы воды растворителя, определенные М. Эйгеном и др. в основном релаксационным методом. [c.246]

    В то время как скорость гидролиза трифенилхлорсилана в 1,0 УИ водном диоксане [3] при 25° может быть легко измерена обычными методами (полученное значение константы скорости гидролиза первого порядка =0,01 сек ), для измерения скорости гидролиза трифенилхлорсилана в 4,0 М водном ацетоне при 25° необходимо применение техники, приспособленной для изучения быстрых реакций ( 1=4,03 секГ ). В последнем исследовании было обнаружено, что скорость гидролиза быстро повышается с увеличением концентрации воды и реакция имеет по отношению к воде более чем первый (приблизительно четвертый) порядок. В первых двух работах представлены доказательства заметного увеличения скорости вследствие добавок галогенид-ионов (или ионных пар и т. д.). Например, для реакции с 2,7-10" М воды в нитрометане константа скорости первого порядка повышается в 50 раз при добавлении 9-10 М тетраэтиламмонийхлорида ( 2H.,)4N 1". Для сравнения, добавление тетраэтиламмонийперхлората ( 2H5)4N 10 4 вызывает лишь небольшое увеличение скорости. Авторы всех трех работ истолковывают полученные данные как свидетельство в пользу следующего переходного состояния для кинетической стадии (В — основание, способное содействовать отщеплению протона от ROH)  [c.79]

    Выще упоминалось, что образование и свойства этих соединений свидетельствуют о том, что они представляют собой комплексы с октаэдрической координацией, в которых связи центрального атома железа являются либо преимущественно ионными, либо преимущественно ковалентными. Однако между типом связи, образующейся в комплексе, и скоростью реакции нет соответствия. При проведении кинетических исследований реакции между гемоглобином и кислородом или окисью углерода Хартридж, Рафтон и Милликен разработали метод быстрого потока для изучения быстрых реакций в растворах [4]. Эти кинетические исследования показали, что как реакция соединения, так и процесс распада характеризуются очень большой скоростью. В табл. 5 на основе данных, собранных Милликеном [22], дано сравнение констант скоростей для реакций гемоглобина и миоглобина с Oj и СО. [c.195]

    Другой областью применения гель-хроматографии в биохимии является отделение белков от низкомолекулярных мешающих анализу примесей, например аминокислот, сахаров, стероидов или реагентов, используемых для химической модификации белка. Методом гель-хроматографии чаще всего удаляют реагенты, предназначенные для введения в белок радиоактивной и флуоресцентной меток. Гель-хроматография позволяет также быстрее и эффективнее, чем диализ, осуществить обессолива-ние или смену буфера, требуемые в определенных схемах фракционирования, а также удаление кофакторов и ингибиторов, используемых при изучении кинетики ферментативных реакций. Кроме того, с помощью этого метода можно изучать связывание белков с низкомолекулярными соединениями, например лекарственными веществами, ионами металлов и красителями [10]. Коэффициент распределения Ка некоего стандартного белка с из- [c.106]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    За последние годы внедряются и быстро распространяются методы электронного парамагнитного и ядерного магнитного резонансов для исследования водородных связей, ионных и молекулярных реакций, для оценки молекулярного строения и изменения конфигураций молекул. Эти новые и перспективные методы магнитохи-мии применяются для изучения фракций битумов — определения структуры их соединений. [c.23]

    Это должно привести к образованию электрона, который может сольватироваться, и иона ПаО , который быстро вступает в реакцию с образованием иона гидроксония и радикала гидроксила. Этот метод имеет два серьезных недостатка. Во-первых, потенциал диссоциации воды равен 12,56 эб, и нет оснований считать, что энергия диссоциации н идкой воды окажется много меньше энергии диссоциации газообразной воды, так как большие энергии ак-ватации протона и электрона не могут быть использованы в момент поглощепия света для уменьшения энергии, потребляемой в реакции (7). Вследствие этого фотоионизация будет происходить при длинах волн, лежащих в вакуумном ультрафиолете, и процесс трудно осуществить методически. Дополнительная трудность возникает при необходимости изучения реакции электрона с дру гими соединениями в растворе, так как почти каждое добавленное в раствор соединение будет иметь в этой области сильную полосу поглощения. [c.460]

    У этого метода много преимуществ. В растворе не присутствует никаких растворенных частиц, кроме ионов НгО , которые, очевидно, будут реагировать с образованием иона гидроксония, гидроксильного радикала и возбужденных молекул воды, которые могут дезактивироваться. Более того, так как ионизирующая радиация поглощается не селективно, введение в раствор соединений для изучения их реакций с электронами никак не будет влиять на первичный акт. Так как механизм поглощения энергии излучения не зависит от прозрачности среды или ее агрегатного состояния, метод можно применять к окрашенным кристаллическим или аморфным твердым веществам, так же как и к жидкостям. В этом случае может быть легко использована методика изоляции променчуточных веществ матрице11 (допускающая их дальнейшее изучение методами оптической или магнитной спектроскопии). Наибольшее достоинство этого метода, вероятно, заключается в возможности использования импульсов с ВЫСОКО дозой радиации и очень малой продолжительностью, например до 10 сек. Поэтому импульсный радиолиз, нолностью аналогичный импульсному фотолизу с еще меньшим временем подъема и падения импульса, может применяться для измерения абсолютных констант скорости реакций промежуточных веществ, поглощающих свет. Недостатком этого метода является то, что наряду с электронами всегда образуется примерно равное количество гидроксильных радикалов, которые быстро взаимодействуют с электронами. Кроме того, в системе образуются возбужденные молекулы воды, которые могут диссоциировать или не диссоциировать на атомы водорода и гидроксильные радикалы. Практически этот недостаток может быть в значительной степени уменьшен введением в раствор веществ, связывающих гидроксильные радикалы. [c.462]


Смотреть страницы где упоминается термин Методы изучения быстрых ионных реакций: [c.5]    [c.183]    [c.154]    [c.9]    [c.143]    [c.213]    [c.110]    [c.155]    [c.345]    [c.7]    [c.333]    [c.244]    [c.453]    [c.325]    [c.547]    [c.243]    [c.33]   
Смотреть главы в:

Химическая кинетика -> Методы изучения быстрых ионных реакций




ПОИСК





Смотрите так же термины и статьи:

Быстрые реакции

Реакции быстрые, методы изучения



© 2025 chem21.info Реклама на сайте