Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические группы

    Молекулы с массой в несколько тысяч единиц не являются плоскостными. Но они содержат плоскостные участки (ароматические группы), которые, несомненно, имеют тенденцию располагаться параллельно плоским частям соседних молекул и сразу же вступать с ними в контакт. Таким путем формируются небольшие группы ароматических ядер в два или три слоя, относящихся к различным молекулам. Электронная плотность в них увеличена, что позволяет изучать их с применением рентгеновских лучей. [c.32]


    За сравнительно немногими исключениями щелочные соли сульфокислот хорошо растворимы в воде растворимость понижается при введении в молекулу высокомолекулярных ароматических групп и повышается с увеличением числа сульфогрупп. Щелочные соли обычно выделяются из раствора путем высаливания их избытком какой-нибудь легко растворимой соли соответствующего щелочного металла. Более общий способ выделения соли сульфокислоты и щелочного металла заключается в нейтрализации продукта сульфирования известью или другим основанием, дающим нерастворимый осадок с ионом 804" с последующим отфильтровыванием и обработкой фильтрата карбонатом или сульфатом щелочного металла. Фильтрат, полученный от этой операции, упаривается, пока из него не начнет выкристаллизовываться щелочная соль сульфокислоты. Свинцовые соли и соли щелочноземельных металлов сульфокислот, вообще говоря, хорошо растворимы в воде, но соли изомерных кислот часто сильно различаются между собой по растворимости, что дает возможность разделять продукты сульфирования посредством фракционированной кристаллизации кальциевых, бариевых или свинцовых солей. [c.10]

    При рассмотрении свойств эластомеров на основе ароматического (ТДИ) и алифатического (ГДИ) диизоцианатов было показано [36], что с ростом содержания уретановых групп температура стеклования возрастает линейно. Степень же поперечного сшивания в широком диапазоне не оказывает влияния на температуру стеклования [37]. Различия в поведении систем объясняются несомненным влиянием фениленовых групп, соответственно возрастанием жесткости цепи и снижением ее гибкости. В кристаллизующихся уретановых эластомерах введение ароматических групп снижает самопроизвольную кристаллизацию за счет взаимодействия с близлежащими элементами регулярной структуры. Введение жестких звеньев сказывается на температуре стеклования эластомеров, которая для испытанного ряда диизоцианатов гексаметилен-, толуилен-, фенилен-1,4- и нафтилен- возрастает и становится равной —67,5 —52,5 —50,5 и — 17°С [38]. [c.536]

    Аг ароматическая группа, обычно арильная - С Нз  [c.97]

    При коксовании в тех же условиях этого высокополимерного углеводорода, содержащего ароматические группы, было получено 16,2% кокса истинной плотностью 2,10 г см . По текстуре, механическим и электрическим свойствам полученный кокс был практически одинаковым с коксом из смол пиролиза. В дистилляте коксования не было обнаружено твердых парафинов. Коксование полистирольной смолы проходило по сложному механизму параллельно-последовательных реакций с образованием продукта глубокого уплотнения — кокса. [c.47]


    Химические исследования продуктов разложения углей выполняются путем термолиза, окисления или гидрогенизации. Посредством химического анализа в полученных продуктах определены ароматические группы, метилзамещенные группы, длинные цепи парафинового ряда и в ряде случаев представилось возможным показать, что эти системы существовали в углях и до их разложения. [c.30]

    Эти ароматические и гидроароматические группы связаны между собой обычно посредством мостиков —СНа—, вероятно, расположенных так, как указано на рис. 7 в гидроароматических кольцах, что объясняет возрастающее количество ароматических групп путем дегидрирования углей в процессах их углефикации или коксования. Предполагается также наличие эфирных связей типа R—О—Я. Таким способом образуются молекулы, средняя масса которых должна быть в пределах нескольких тысяч, так как молекулы, масса которых не превышает 1000, могут быть экстрагированы воздействием растворителей при относительно низкой температуре. [c.32]

    Гидрогенолиз в этих случаях, вероятно, включает в себя частичное удаление гетероатомов (О, 8, Ы) и одновременно представляет собой вид деполимеризации, состоящей в частичном или полном разрыве мостиков и гидрогенных связей между ароматическими группами, но здесь почти отсутствует сорбция водорода на ароматических ядрах. Способность превращаться в пластичное состояние в процессе коксования угля улучшается в результате эффекта, противоположного тому, который производит легкое окисление. [c.39]

    Реакции ароматизации и конденсации состоят, напротив, в образовании ароматических групп, все более и более расширяемых одновременно путем дегидрогенизации (следовательно ароматизации) насыщенных колец и соединения ароматических групп между собой путем образования ароматических связей С—С. Эти реакции освобождают водород и приводят к образованию твердого остатка угле- [c.80]

    Очевидно также, что поскольку наращивание особенно полиметиленовых не ароматических групп в ароматических углеводородах и процессах преобразования нефти невозможно, простейшие ароматические углеводороды являются главным образом вторичными продуктами и что высшие ароматические углеводороды являются одним из начальных этапов превращения материнского органического вещества в нефть. [c.103]

    Фенол-простейший пример соединений, в которых группа ОН присоединена к ароматическому кольцу. Одним из наиболее замечательных свойств ароматической группы является сильное повышение кислотности протона. Кислотность фенола в воде приблизительно в миллион раз больше кислотности типичного алифатического спирта, например этанола. Но все же фенол отнюдь не относится к сильным кислотам (К = 1,3 -10 °). В промышленности фенол находит применение при изготовлении некоторых пластмасс и для получения красителей. [c.429]

    Для объяснения этого рассмотрим механизм деполимеризации (стр. 49). Как видно из схемы реакции, к образованию наиболее летучих продуктов — мономеров приводит реакция развития цепи продукты распада с более высоким молекулярным весом образуются по реакции передачи цепи. Очевидно, что реакция по схеме 3 протекает преимущественно у полимеров, не имеющих заместителей, например, у полиэтилена и у содержащих подвижный атом водорода. Полимеры, содержащие четвертичные атомы углерода, имеют меньшую возможность для передачи водорода и образуют мономеры по реакции развития цепи — по схеме 2. Ароматическая группа повышает активность полимерных радикалов. [c.87]

Таблица 9.1. Группы, проявляющие+М- и —Ж-эффекты (порядок перечисления не соответствует силе эффекта). Ароматические группы Аг могут проявлять оба эффекта Таблица 9.1. Группы, проявляющие+М- и —Ж-эффекты (порядок перечисления не соответствует <a href="/info/380830">силе эффекта</a>). <a href="/info/53997">Ароматические группы</a> Аг могут проявлять оба эффекта
    Если в реакции (1) R — ароматическая группа, реакция может идти по механизму простого отрыва, обсуждавшемуся выше, особенно в газовой фазе. Однако далеко не все реакции ароматических субстратов можно объяснить с помощью этого механизма. В таких реакциях, как 14-16, 14-19 н 14-20 (см. ниже), общая схема которых имеет вид [c.58]

    Окисление карбоновых кислот пероксидом водорода в присутствии кислотного катализатора — наилучший обший метод синтеза перкислот [383]. Наиболее распространенным катализатором для субстратов с алифатическими группами К является концентрированная серная кислота. Реакция обратима, и равновесие можно сместить вправо, удаляя воду или применяя избыток реагента. Для субстратов с ароматическими группами К наилучшим катализатором является метансульфокислота, которая используется и как растворитель. [c.307]


    Замещение ароматической группы СООН на галоген [c.418]

    Введение в основную цель полиэфира ароматических групп приводит к резкому повышению температуры плавления  [c.349]

    Ароматические кетоны имеют или две ароматические группы, или арильную и алкильную группы  [c.138]

    Этим методой ароматические группы можно вводить даже в тех случаях, когда применение магнийорганических соединений дает отрицательные результаты, [c.663]

    Разделение ароматическах групп. В принципе выделение ароматических групп может быть доведено до К9нца любым методом, использующим различие в физических свойствах абсорбции и адсорбции экстракция и хроматография являются основами таких методов. В противоположность крупномасштабным процессам, примевяемым в переработке, где до сих пор экстракция шире применяется, чем хроматография, при лабораторных исследованиях лучшие результаты достигаются при помощи хроматографии. Преимущество этого метода разделения связано, с одной стороны, с простотой процесса и необходимого оборудования, а с другой стороны, с точностью разделения. [c.389]

    В дистиллятах нефти каждая ароматическая группа дает растекание адсорбируемости, обусловленное вторичными явлениями, вызываемыми присутствием нафтеновых колец, степенью замещения и разветвлением заместителей. В более тяжелых фракциях это приводит к значительному перекрытию между группами, потому что, например, наиболее сильно адсорбируемая часть одной ароматической группы может иметь такую жо адеорбируолюсть, как и наиболее слабо адсорбируемая часть следующей группы. [c.389]

    Гидрогенизация в зоне термической деструкции. Когда увеличивают температуру выше 350° С, механизм реакций постепенно изменяется на первичное воздействие накладываются другие, более быстрые и энергично действующие условия, характерные для процесса термической деструкции. Имеется в виду обычно разрыв связи углерод—углерод с образованием свободных радикалов, удалением освобождаемых при этом групп атомов, наиболее богатых водородом в форме летучих веществ, и реконденсация в более стабильные формы радикалов, менее летучих и более богатых ароматическим углеродом. Водород под давлением, вероятно, вмешивается в этот механизм, насыщая свободные валентности одной части образованных радикалов и препятствуя тем самым их конденсации. Вероятно также, что он препятствует термической дегидрогенизации ненасыщенных циклов, что приводит к расширению ароматических групп и к образованию кокса (см. рис. 19). [c.39]

    Здесь не упоминается одна группа, наиболее сильно адсорбирующаяся на всех адсорбентах, для которой достигается совершенно полное разделение, но иногда эта группа определяется менее резко обычно она относится к смолам. Эта группа соединений состоит в основном из смеси азотистых и кислородных соединений. Другие гетеросоставляющие, содержащие в основном в качестве гетероатома серу, распределяются по многим ароматическим группам. [c.389]

    Бензиловый спирт также вступает в реакцию с образованием толуола и 2-фенилэтанола первый является продуктом гидрогенолиза, второй гомологизации 1 [25]. За иещение одного из атомов водорода в метиленовой группе бензилового спирта ароматической группой промотирует реакцию гидрогенолиза так бензгидрол дает количественный выход дифенилметана. Превращение метанола и бензилового спирта в высшие спирты, члены того же гомологического ряда, конечно, не может проходить через олефиновые промежуточные соединения, поэтому эти реакции особенно важны при рассмотрении механизма реакции. [c.297]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    На рис. 10. 3 показана зависимость tg б при 20° С масел различной вязкости и состава, а также пафтено-парафиновых и ароматических групп углеводородов, выделенных из этих масел, от частоты [1]. [c.532]

    В то же время при разделении парафино-нафтеновых и ароматических групп углеводородов селективность у фурфурола выше, чем у N - Ш. Однако при разделении ароматической части сырья более высокая селективность yN - Ш. Следовательно, для получения высокого выхода рафината от потенциала необходимо выбор селективного растворителя (при црочихравных условиях) ставить в зависимость от химического состава исходного сырья. Учитывая изложенное, целесообразно использовать фурфурол для очистки сырья с высоким содержа- [c.113]

    Превращение сложных эфиров в амиды — полезный метод синтеза незамещенных, N-замещенных и N,N-дизaмe-щенных амидов из соответствующих аминов [727]. Реакцию можно проводить с алкильными или ароматическими группами R и R. Особенно хорошей уходящей группой является п-нитрофенильная. Эта реакция весьма ценна, так как многие сложные эфиры легкодоступны или сравнительно легко получаются даже в тех случаях, когда этого нельзя сказать о соответствующем ангидриде кислоты или ацилгалогениде. Согласно другой методике, сложные эфиры обрабатывают амидами диметилалюминия MeaAlNRR и получают хорошие выходы амидов в мягких условиях [728]. Реагент легко получить из триметилалюминия и аммиака или первичного или вторичного амина, а также из их солей. [c.158]

    Значительно раньше стала известна реакция сочетания алкилгалогенидов с реактивами Гриньяра (обзор см. [1020]). Реактивы Гриньяра обычно обладают тем преимуществом, что их легче приготовить, чем соответствующие Кг СиЫ, но реакция обладает значительно более узким диапазоном применимости. Реактивы Гриньяра вступают в реакцию сочетания только с реакционноспособными галогенидами — аллилгалоге-нидами (хотя в этом случае часто встречаются аллильные перегруппировки) и бензилгалогенидами. Реакция идет также и с третичными алкилгалогенидами, но выходы продуктов низки (от 30 до 50%). При использовании реактивов Гриньяра, содержащих ароматические группы, выходы продуктов значительно выше по сравнению с выходами алкилпроизводных. Кроме того, поскольку реактивы Гриньяра взаимодействуют с группами С = 0 (т. 3, реакции 16-30 и 16-33), их нельзя применять для сочетания с галогенидами, содержащими в молекуле кетонную, сложноэфирную или амидную функциональные группы, И хотя сочетание реактива Гриньяра с обычными алкилгалогенидами не находит, как правило, применения в синтезах, небольшие количества симметричных продуктов сочетания часто получаются при приготовлении самого реактива. Высоких выходов при сочетании реактива Гриньяра с алкилгалогенидами (см. обзор [1021]) можно добиться при использовании катализаторов, таких, как соли меди(1), которые позволяют проводить сочетание реактивов Гриньяра с первичными алкилгалогенидами с высокими выходами [1022] (возможно, интермедиатами здесь являются медьорганические соли), комплексы железа(П1) [1023] или палладия [1024], а также соли меди(II) [1025], под дейст- [c.190]

    Этот продукт под действием безводного Sn la восстанавливается до R H = NH, который выпадает в осадок в виде комплекса с Sn U, который затем гидролизуют (реакция 16-2) до альдегида. Восстановление по Стефану дает наилучшие результаты для ароматических групп R, но реакция проходит и в случае алифатических групп, содержащих до 6 атомов углерода [280]. Соединение 23 можно приготовить также обработкой Ar ONHPh пентахлоридом фосфора. Полученный таким образом продукт 23 можно затем превратить в альдегид. Эта реакция известна под названием метода Зонна — Мюллера. [c.363]

    Из двух шкал первая более удобна, так как показатель р/Са оснований, численно равный pH, при котором половина основания находится в протонированной форме (поскольку катион наполовину диссоциирован), непосредственно можно сравнивать с р/С-шкалой кислот, в то время как рКъ — нельзя. Значения р Са для некоторых обычных оснований приведены в табл. 8.3. Следует обратить внимание на общее возрастание силы основания с увеличением степени замещения атомов водорода на алкильные группы в аммиаке и очень заметное уменьшение основности, когда заместителем является ароматическая группа (разд. 6.4). [c.155]

    Введение в состав основной цепи макромолекул полиэфира ароматических групп снижает гибкость макромолекул, а следовательно, повышает температуры стеклования и плавления полиэфира. Так, температура плавления полиэтиленгликольтерефталата, как уже указывалось, составляет 260—265°, а температура плавления полиэтиленгликольадипината всего 50°. Введение в состав макромолекул кислотных или спиртовых звеньев, в которых сочетаются ароматические и алифатические группы,, дает возможность еще больше варьировать свойства полиэфиров от твердых, жестких и высокоплавких материалов до высокоэластичных или низкоплавких воскоподобных. Например, полиэтиленгликолевый эфир п, га -дифе-нилендикарбоновой кислоты [c.709]

    Отим же методом получают диариларсиповые кислоты о двумя различны ароматическими группами. [c.667]


Смотреть страницы где упоминается термин Ароматические группы: [c.331]    [c.540]    [c.481]    [c.315]    [c.383]    [c.169]    [c.123]    [c.162]    [c.223]    [c.9]    [c.169]    [c.269]    [c.28]    [c.198]    [c.45]    [c.228]    [c.418]   
Справочное руководство по эпоксидным смолам (1973) -- [ c.49 ]




ПОИСК







© 2025 chem21.info Реклама на сайте