Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения аланина белковых

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Как явствует из схемы, приведенной на фиг. 24 и 25 (гл. 6), глутамат, аспартат, аланин и глицин, прежде чем подвергнуться окислению в цикле Кребса, должны быть превращены соответственно в а-кетоглутарат, оксалоацетат, пируват и глиоксилат. Это, по-видимому, будет иметь место всякий раз, когда деградация белков будет опережать их ресинтез. Подобным же образом углеродные скелеты некоторых других аминокислот (а также, конечно, жирных кислот) могут окисляться в цикле трикарбоновых кислот после их превращения в ацетат или ацетил-КоА. Углеродные атомы пирувата могут включаться в цикл через стадию ацетил-КоА, а также с помощью реакций (1) — (3)  [c.120]

    Второй пример взаимосвязи - существование общих предшественников и промежуточных продуктов. Протекание самых разных реакций на этом пути включает и кооперативные, и сопряженные, и конкурентные взаимодействия. Примером может быть образование различных соединений углеводной и липидной природы на основе глицерина, а также аминокислот - аланина, серина - на основе триоз, образующихся во время гликолиза. Следует отметить, что наиболее важным промежуточным продуктом обмена веществ, участвующих во всех метаболических реакциях, является ацетил-КоА - ключевая молекула и связующее звено различных сторон обмена. Существенно и наличие однонаправленности потока веществ в сторону липогенеза от углеводов и белков через ацетил-КоА. Поскольку в организме человека не существует механизма превращения ацетил-КоА в трехуглеродное соединение, то [c.119]

    Печень участвует также в метаболизме аминокислот, поступающих время от времени из периферических тканей. Спустя несколько часов после каждого приема пищи из мышц в печень поступает аланин в печени он подвергается дезаминированию, а образующийся пируват в результате глюконеогенеза превращается в глюкозу крови (разд. 19.12). Глюкоза возвращается в скелетные мышцы для восполнения в них запасов гликогена. Одна из функций этого циклического процесса, называемого циклом глюкоза-аланин, состоит в том, что он смягчает колебания уровня глюкозы в крови в период между приемами пищи. Сразу после переваривания и всасывания углеводов пищи, а также после превращения части гликогена печени в глюкозу в кровь поступает достаточное количество глюкозы. Но в период, предшествующий очередному приему пищи, происходит частичный распад мышечных белков до аминокислот, которые путем переаминирования передают свои аминогруппы на продукт гликолиза пируват с образованием аланина. Таким образом, в виде аланина в печень доставляется и пируват, и КНз. В печени аланин подвергается дезаминированию, образующийся пируват превращается в глюкозу, поступающую в кровь, а КНз включается в состав мочевины и выводится из организма. Возникший в мышцах дефицит аминокислот в дальнейшем после еды восполняется за счет всасываемых аминокислот пищи. [c.754]


    Пировиноградная кислота является также связующим звеном между обменом углеводов и белков, так как она может образоваться из продуктов превращений ряда аминокислот. С другой стороны, она служит источником синтеза аминокислоты аланина, из которой в результате переаминирования могут образовываться другие аминокислоты  [c.160]

    Конфигурации многих природных а-аминокислот были связаны с глицериновым альдегидом путем серий превращений, подобных приведенной на рис. 17-7, где показано установление связи природного аланина с ъ-(+)-молочной кислотой и, таким образом, с ь-(-)-глицериновым альдегидом. Аланин, следовательно, принадлежит к ь-ряду с помощью такого отнесения конфигураций было показано, что все а-аминокислоты, входящие подобно аланину в состав белков, относятся к ь-ряду. В состав других важных в биологическом отв ошении веществ входят многие в-аминокислоты. [c.524]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Основная масса азота большинства аминокислот проходит в реакциях обмена через стадии превращений в глютаминовую и аспарагиновую кислоты или а-аланин. Содержание этих трех аминокислот в белках достигает 25—30%. Кроме того, в процессах обмена в животных тканях указанные аминокислоты возникают из других аминокислот. Так, глютаминовая кислота образуется из пролина, оксипролина, орнитина и, возможно, из гистидина аланин образуется из триптофана, цистина и, вероятно, из серина. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, составляет также около 25—30% белковой молекулы. В результате около 50—60% белковой молекулы составляют аспарагиновая кислота, аланин, глютаминовая кислота и аминокислоты, связанные с ними прямым переходом в обмене. [c.354]

    Оптическая активность. Работами школы Э. Фишера, Каррера и Левина (1907—1930) путем соответствующих превращений, не затрагивающих асимметрический центр, было показано, что все аминокислоты в белках имеют одинаковую -конфигурацию при а-уг-леродном атоме. Интересно отметить, что один из двух подходов к установлению стереохимического соотношения между аминокислотами и соответствующими сахарами включает умышленное проведение реакции по асимметрическому центру. Хьюз и Инголд (1937) показали, что реакция 5 2 неизбежно сопровождается вальденовским обращением и что взаимодействие галоидпроизводных с азидом натрия может быть проведено так, чтобы исключить бимолекулярное замещение. Этим методом авторы превратили Д-молочную кислоту в вещество, оказавшееся неприродным аланином отсюда природному аланину была приписана -конфигурация  [c.637]

    Поскольку на пролин карбоксипептидаза не действует, после отщепления остатков треонина и аланина от нативного белка ВТМ действие фермента прекращается. В нитритных же мутантах действие карбоксипептидазы продолжается и после отщепления второго остатка, так как за ним следует лейцин. Таким путем было установлено, что под действием азотистой кислоты появляются мутанты, у которых произведена замена трех аминокислот из 158, в том числе замена пролина (третьего остатка от С-конца). Эта замена, вероятно, происходит в результате превращения цитозина в урацил на каком-то из участков цепи РНК, содержащей 6000 оснований. Анализ показал, что изменение даже одного основания может привести к мутации. [c.365]

    Конфигурационное родство этой аминокислоты с (—)-цистеином и (—)-серином было уже давно определено (Э. Фишер, 1907 г.) нри помощи химических превращений [исходя из (—)-серина], в результате которых не происходит замещения при асимметрическом атоме углерода. Таким образом, все эти аминокислоты относятся к ряду L. Химическими методами было также установлено конфигурационное родство между (—)-серином и другими аминокислотами, полученными из белков (П. Каррер, 1930 г.), как это можно увидеть из приведенной ниже схемы. Установлено также аналогичное конфигурационное родство между L-(—)-аспарагиновой кислотой и следующими природными аминокислотами (—)-лейцином, (4-)-валином, (—)-метионином, (—)-треонином, (-1-)-орпитином, (-f)-лизипом, (—)-пролином и (- -)-глутаминовой кислотой. При помощи подобных методов пришли к заключению, что большинство природных аминокислот имеет ту же конфигурацию, что L-серин и L-аланин, и что, по всей вероятности, это заключение справедливо и для тех немногих а-аминокислот, выделенных из белков, конфигурация которых еще не определена химическим путем (а только оптическим сравнением, например на основании правила Клафа, согласно которому оптическое вращение аминокислот ряда L смещается вправо при добавлении минеральной кислоты). [c.384]


    Мы знаем из гл. 19, что в животном организме углеродные скелеты многих аминокислот, получающихся при распаде белков, превращаются в конце концов полностью или частично в пируват или в определенные промежуточные продукты цикла лимонной кислоты. Это делает возможным реальное превращение таких аминокислот в глюкозу и гликоген, вследствие чего они и бьши названы глю-когенными (табл. 20-2). В качестве примеров можно указать аланин, глутамат [c.607]

    Аланин принадлежит к числу тех аминокислот, которые сначала были получены синтетически и лишь позднее признаны природными продуктами. В 1850 г. Штреккер [2], пытаясь получить молочную кислоту, обработал продукт конденсации ацет-альдегида и аммиака цианистоводородной и соляной кислотами полученный в кристаллической форме аланин был превращен в молочную кислоту путем обработки азотистой кислотой. Реакция Штреккера ведет к образованию аминонитрила, который после гидролиза дает соответствующую аминокислоту оказалось, что эта реакция может быть использована для по-отучения ряда других аминокислот из соответствующих альдегидов. Через 38 лет после того, как Штреккер синтезировал аланин, Вейл [3] выделил эту аминокислоту из кислотного гидролизата шелка — белка, наиболее богатого аланином. Позднее Фишер и Скита [4] получили Ь-аланин из шелка и установили его структуру и конфигурацию путем превращения его в молочную кислоту. [c.12]

    Опубликованы данные, согласно которым превращение серина в глицин в экстрактах одного из видов lostridium происходит в присутствии дифосфопиридиннуклеотида, ионов марганца, пиридоксальфосфата, ортофосфата и нового фактора, обозначенного как кофермент С. Этот фактор отличается от упомянутых выще производных фолевой кислоты. Из С. ylindrosporum были выделены 5 групп птеридиновых соединений, обладающих активностью кофермента С оказалось, что некоторые из них содержат глутаминовую кислоту, глицин, серин и аланин [208, 209]. Имеются указания на то, что в обмене одноуглеродных соединений может участвовать витамин Е [215]. Так, например, при введении кроликам с недостаточностью витамина Е С -мура-вьиной кислоты последняя включалась в нуклеиновые кислоты и белки значительно более активно, чем у контрольных животных если вводили 1-С -глицин, то у животных с недостаточностью витамина Е включение изотопа было понижено. [c.329]

    Поскольку было установлено, что синтетические сополимеры стимулируют включение аминокислот в белок, оказалось возможным поставить следующий эксперимент, позволяющий проверить гипотезу об адаптерной роли растворимой РНК-Поли-УГ стимулирует включение цистеина в полипептиды, но не стимулирует включение аланина. Цистеин, присоединенный к растворимой РНК, с помощью специальной обработки был превращен в аланин, который оставался по-прежнему связанным с цистеи-новой S-PHK. В этом случае полн-УГ стимулировал включение аланина. Таким образом, аминокислота, прикрепленная к растворимой РНК, сама по себе не влияет на процесс кодирования. Поли-УГ опознает специфическую цистеиновую транспортную РНК независимо от того, какая аминокислота к ней присоединена. Следовательно, транспортная РНК обладает характерными свойствами молекулы-адаптера, о которых говорилось выше. В одном из таких экспериментов было обнаружено включение аланина в пептидный фрагмент а-цепи гемоглобина. В обычных условиях этот пептид содержит не аланин, а цистеин. Этот результат подтверждает гипотезу об адаптерной роли растворимой РНК при синтезе белка. [c.378]

    Аланин —а-аминопропионовая кислота — обычная составная часть всех белков. В организме растений и животных она образуется из пировиноградной кислоты в результате ее ферментативного переаминирования или прямым фер у1ентативным восстановлением и аминированием. В своЮ очередь аланин реакциями переаминирования и дезаминирования превращается в пировиноградную кислоту эти превращения подтверждают непосредственную связь аминокислот с углеводами в процессе обмена. [c.210]

    Было также установлено, что размеры кристаллической решетки полимеров триокситриазиновых колец таковы, что она может содержать только глицин и аланин, для боковых же цепей других аминокислот места нет [75]. Наконец, было установлено, что предположение о наличии в белках триокситриазиновых колец неприемлемо с энергетической точки зрения [76]. При исследовании большого числа соединений, содержащих группы —СО ЫН—, было показано также, что превращение этих групп в группы —С(ОН)=Н— связано с образованием ароматических колец [77]. Освобождающаяся при образовании этих колец энергия используется для образования энолизованной лактимной связи [77]. [c.132]

    Показано, что первой аминокислотой, образующейся в растении, является аланин, далее идут дикарбоновые аминокислоты— аспарагиновая и глутаминовая. Основные аминокислоты и ароматические аминокислоты образуются позже, в результате процессов переаминирования. Тот факт, что первой аминокислотой, синтезируемой в растениях в результате переработки аммиака является аланин, по-видимому, обусловлен тем, что в растениях в качестве постоянного метаболита в процессе дыхания всегда образуется пировиноградная кислота, которая очень легко подвергается восстановительному аминированию аммиаком с образованием аланина. Применяя азотную подкормку, меченную тяжелым изотопом азота Ы , удалось показать, что синтезированные за счет внесеннего в подкормку минерального азота аминокислоты быстро идут на синтез белковых веществ растений. Оказалось, что весь путь превращений внесенного в подкормку минерального азота, от почвы до конституционных белков протоплазмы листьев растений, измеряется при интенсивно идущем синтезе 3—4 часами. Проведенными в последние годы в нашей лаборатории исследованиями было показано, что [c.288]

    Дальнейшие энзиматические превращения фосфоглицериновой кислоты ведут к образованию карбоновых кислот, углеводов и аминокислот. Синтез гексоз проходит в обратном направлении, тем же путем, как гликоли т. е. энзиматический распад углеводов с участием процессов фосфоролиза,. наблюдаемый при спиртовом брожении, в мышечных тканях и т. д. Предшественниками сахарозы являются не глюкоза и фруктоза, а продукты их фосфорилирования, а именно глюкозо-1-монофосфат (эфир Кори) и фрук-тозо-6-монофосфат. Это видно из того, что в сахарозе и в обоих эфирах, при кратковременном освещении, радиоактивный углерод появляется раньше, чем в глюкозе и фруктозе. Образование аминокислот, из которых синтезируются белки, идет в общих чертах следующим путем. Двууглеродные группы типа ацетатов образуют пировиноградную и щавелеуксусную кислоты, аминирование которых дает аминокислоты. Синтез последних из ацетатов был подтвержден прямым путем добавление к освещаемой взвеси хлореллы ацетата, меченного радиоактивным С в карбоксиле, быстро ведет к появлению радиоактивного а-аланина с меченым углеродом не только в карбоксиле, но и в углеродной цепи. Превращения пировиноградной кислоты по рассматриваемому ниже циклу трикарбоновых киСт лот, повидимому, при фотосинтезе не происходит, так как не удалось идентифицировать образования радиоактивной а-кетоглютаровой кислоты и некоторых других звеньев этого цикла. Во всех рассмотренных превращениях принимают участие энзимы и процессы фосфорилирования и дефое-форилирования, как и в других случаях обмена углеводов. [c.309]

    Щелочной гидролиз применяют главным образом при онределении триптофана, который в щелочной среде устойчивее, чем в кислой. Щелочи не только способствуют потерям при гидролизе оксиаминокислот, по они часто вызывают качественные изменения в составе гидролизата. При щелочном гидролизе серии разлагается на гликокол, аланин, аммиак н пировиноградную кислоту (Виланд и Вирт [3]), треонин расщепляется на гликокол и аминомасляную кислоту цистин разлагается на тиомолоч-ную кислоту, сероводород и аммиак. Аргинин в щелочной среде разлагается на орнитин и цитруллин. При щелочном гидролизе некоторых белков в их гидролизате была обпаруигона новая аминокислота, лаитионин, которая образуется в виде артефакта из цистеина (Хорн и др.). Подобные качественные изменения имеют место также и при щелочном гидролизе пептидов, в частности при таких условиях, в которых свободные аминокислоты (треонин) не подвергаются превращениям (Зангер и Туппи [4]). [c.466]

    Фибриллярный белок коллаген — самый распространенный белок в мире животных в организме человека с массой тела 70 кг содержится от 12 до 15 кг белков, и половина этого количества приходится на коллаген. Молекула коллагена (тропоколлагена) построена из трех пептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков. Необычен аминокислотный состав коллагена каждая третья аминокислота — это глицин, 20 % составляют остатки пролина и гидроксипролина, 10 % — аланина, остальные 40 % представлены всеми другими аминокислотами. Коллаген — единственный белок, в котором содержится гидроксипролин. Эта аминокислота получается путем гидроксилирования части остатков пролина уже после образования пептидных цепей. Гидроксилиру-ется также некоторая часть остатков лизина с превращением в гидроксилизин. [c.47]


Смотреть страницы где упоминается термин Превращения аланина белковых: [c.143]    [c.92]    [c.255]    [c.254]    [c.268]    [c.268]    [c.481]    [c.156]    [c.465]    [c.144]    [c.294]   
Биохимия Издание 2 (1962) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин



© 2025 chem21.info Реклама на сайте