Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидролиз щелочной пептидов

    Количество связанного лиганда определяется в зависимости от его природы с помощью методов, основанных, как правило, на освобождении аффинного лиганда в результате щелочного или кислотного гидролиза. Анализируя пептиды, удобнее всего определять количество аминокислот после кислотного гидролиза [3]. При использовании радиоактивного лиганда целесообразно проводить измерение радиоактивности. Концентрацию связанного аффинного лиганда удобнее выражать числом микромолей этого лиганда, приходящимся на 1 мл набухшего в колонке геля, а не на 1 г сухого носителя. [c.12]


    Химотрипсин в щелочной среде (pH 8) гидролизует в пептидах преимущественно связи тех же ароматических кислот, что и пепсин, но с другой стороны — со стороны карбоксила. Трипсин рвет пептидные связи со стороны карбоксила у остатков лизина и аргинина. Карбокси- [c.741]

    Таким образом, подкисление эндосперма — важный этап в прорастании зерновок, так как он настраивает всю систему кислого внеклеточного пищеварения и транспорта на рабочий ритм. Низкомолекулярные пептиды, образующиеся вместе с аминокислотами при гидролизе белков, поглощаются щитками и сразу же гидролизуются щелочной эндопептидазой до аминокислот. [c.287]

    Пептидную связь можно гидролизовать в кислой, щелочной среде и под действием ферментов, получив снова. аминокислоты. С помощью подходящей комбинации экспериментальных методов можно определить последовательность расположения аминокислотных остатков в молекулах пептидов и белков. Эта последовательность называется первичной структурой пептида или белка. [c.191]

    Гидролиз химотрипсином проводят при 37° С в щелочной среде (pH 8,0—8,6). Отношение фермента к белку 1 100 (по весу). При длительном гидролизе фермент к субстрату добавляют двумя или тремя порциями. Природа буфера, используемого для гидролиза, зависит от характера последующей работы. При разделении пептидов гидролизата хроматографическими и электрофоретическими методами на бу- [c.140]

    Сбраживание осадков проходит две фазы кислую и щелочную. В кислой фазе сбраживания сложные органические вещества осадка и ила под действие(м внеклеточных бактериальных ферментов сначала гидролизуются до более простых белки — до пептидов и аминокислот, жиры — до глицерина и жирных кислот, углеводы — до простых сахаров. В дальнейшем образуются конечные продукты — органические кислоты. Во второй фазе щелочного или метанового сбраживания из органических кислот образуются метан и угольная кислота. [c.259]

    Для изучения аминокислотного состава белков пользуются сочетанием кислотного (НС1), щелочного [Ba(OH)J и, реже, ферментативного гидролиза или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии либо в виде коротких пептидов или комплексов с другими органическими веществами. [c.33]

    Разделение и идентификация смеси коротких пептидов, которые могут получаться при частичном кислотном или щелочном гидролизе, а также при неспецифическом ферментативном расщеплении полипептидов и подобных больших молекул, все еще представляют собой довольно трудные задачи, требующие для своего решения сложного оборудования и больших затрат времени. ГХ таких смесей может значительно упростить процедуру, хотя проблема идентификации остается нерешенной. В сущности преимущество ГХ состоит в том, что разделенные соединения можно регистрировать при низких концентрациях, выделять свободными от различных 12-439 [c.337]


    За исключением особых случаев [109, 169] щелочной гидролиз белков не получил применения из-за значительной деструкции [40, 140]. При щелочном гидролизе происходит не только разложение аминокислот, но возможно и получение артефактов. Кроме того, вследствие ионизации атома водорода у а-углеродного атома происходит рацемизация, возможно, через образование промежуточного карбаниона [43]. Однако этот механизм не согласуется с тем фактом, что пептиды рацемизуются значительно быстрее аминокислот, а в случае С-концевых аминокислот рацемизация отсутствует [120]. [c.394]

    Если в синтезе пептида используется эфир фталиламинокислоты, гидролиз эфира пептида следует проводить в кислых условиях, так как фталильная группа чувствительна к действию щелочей [933, 2060]. Гидролиз ведут обычно 2 н. соляной, 2 н. серной или концентрированной соляной кислотой в ацетоне, смеси ацетона с водой или в ледяной уксусной кислоте при нагревании в течение 0,5—2 час [1627, 2060, 2062, 2064]. Подробные экспериментальные данные для случая высших пептидов не приводились. Отщепление фталильной группы можно проводить и в более жестких условиях. При кипячении фталилпептида с концентрированной соляной кислотой в смеси ацетона с водой в течение 3 час было получено 15% свободного пептида [2055]. о-Карбоксибензоилпептиды, образующиеся в результате щелочного гидролиза, можно вновь превратить в фталилпептиды пу [c.38]

    Щелочной гидролиз эфиров пептидов становится гораздо более трудным по мере удлинения пептидной цепи [683]. Иногда омыление эфиров высших пептидов требует настолько жестких условий, что это приводит к одновременному отщеплению N-за-щитных групп и значительной рацемизации. В этом случае определенные преимущества приобретает кислотный гидролиз, для которого обычно используют соляную кислоту. Эфиры фталил-и карбобензоксипептидов можно гидролизовать соляной кислотой в ацетоне или диоксане в течение 0,5—1,5 час при комнатной температуре [1183, 2060]. В более жестких условиях, а именно при обработке 12 и. НС1 при 39°, эфиры карбобензоксипептидов претерпевают гидролиз и одновременное декарбобензоксилирование [1538, 1951]. Сложноэфирные связи пептидов с незамещенной аминогруппой расщепляются значительно легче [478, 2017]. В некоторых случаях сравнительно жесткие условия, необходимые для кислотного гидролиза метиловых или этиловых эфиров, могут вызывать расщепление пептидных и особенно амидных связей в N-карбоксамидных группировках. В частности, гидролиз м-амидной связи успешно применялся в ряде случаев основываясь на этом, можно проводить селективное отщепление защитных группировок с ш-карбоксильных функциональных групп аминодикарбоновых кислот во время пептидного [c.92]

    Химотрипсин в щелочной среде (pH 8) гидролизует в пептидах преимущественно связи тех же ароматических кислот, что и пепсин, но с другой стороны — со стороны карбоксила. Трипсин рвет пептидные связи со стороны карбоксила у остатков лизина и аргинина. Кирбокси-пептидазы осуществляют гидролиз концевой аминокислоты, имеющей свободный карбоксил. С аминного конца белка или пептида подобный гидролиз осуществляют аминопептидазы. Они входят в состав ферментного выделения стенок тонких кишок. Здесь пищеварение заканчивается полным гидролизом до аминокислот в результате действия на дипептиды фермента дипептидазы. Аминокислоты всасываются через стенки кишеч-иика и поступают в кровь. [c.701]

    В общем случае это достигается этерификацией карбоксильной группы, подлежащей защите. Для получения метилового или этилового эфира обрабатывают аминокислоту метанолом или этанолом, насыщенным НС1 (этерификация по Фищеру). Однако обычно предпочитают эфиры, гидролиз которых легко провести в мягких условиях. Хотя эфиры омыляются основаниями гораздо легче, чем пептиды (поскольку алкоксиды — лучщие уходящие группы), используемые для этого щелочные условия нельзя применять для деблокирования полипептидов. Использование бензи-ловых эфиров позволяет удалять защитные группы при нейтральных условиях с помощью каталитического гидрирования. Бензи-ловые эфиры синтезируют из кислоты и бензилового спирта в присутствии кислоты или тиоиилхлорида (который переводит спирт в сульфохлорид, и уже последний замещается кислотой), [c.77]

    Эти данные были использованы для ступенчатого последовательного гидролиза и анализа пептидов с N-конца, что сравнимо с действием аминонептидазы. Для большинства аминокислот выход реакции гидролиза составляет 30—50%. Для иовышения выхода предложен другой подход с использованием твердофазного носителя. В щелочном буфере при 60°С только N-концевой остаток остается связанным с твердофазным носителем, а остальные ненрореагировавшие вещества могут быть отмыты и использованы вновь [230]. [c.358]

    Молекула альбомицина, как показали чешские ученые О. Микет, И. Туркова и Ф. Шорм, состоит из 2 частей пептида, включающего 3 остатка /-серина, 3 остатка N -гидроксиорнитина, и комплексно связанный с ними ион трехвалентного железа, а также пиримидина, содержащего серу. Обе части связаны атомом кислорода гидроксила одного из трех остатков серина При щелочном гидролизе пиримидиновой части молекулы обнаружен [c.743]


    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    В основе метода динитрофенилирования лежит реакция свободных ЫНг-групп белка или пептида с 2,4-динитрофторбензолом (ДНФБ) в щелочной среде, при которой образуются соответствующие динитрофенильные производные (ДНФ-производные). В реакцию с ДНФБ, кроме свободных а-ЫНг-групп, вступают также е-ННг-группа лизина, 5Н-группа цистеина, ОН-группы оксиаминокислот и имидазольный гетероцикл гистидина. ДНФ-производное белка или пептида подвергают полному кислотному гидролизу. Ы-концевые ДНФ-амино-кислоты экстрагируют из гидролизатов эфиром, отделяя их от свободных аминокислот и ДНФ-производных по другим функциональным группам аминокислот, которые растворимы в воде. Идентификацию [c.145]

    Помимо а- и е-аминогрупп дансилхлорид вступает в реакцию с ОН-группами тирозина, 5Н-группами цистеина и имидазольными кольцами гистидина (два последних соединения неустойчивы при щелочных значениях pH), а также с аммиаком, растворенным в воде. При взаимодействии ДНС—С1 с аммиаком образуется дансилсульфо-намид (ДНС-ЫНг). При щелочных значениях pH, дансилхлорид подвергается гидролизу с образованием дансилсульфоновой кислоты (ДНС—ОН). После окончания реакции дансилирования модифицированный белок или пептид подвергают кислотному гидролизу. Боль- [c.148]

    Пептид (или белок) обрабатывают 2,4-динитрофторбензолом в слабо щелочной среде (pH 9) при 20—25°. Образующиеся 2,4-динитрофе-нильные производные не распадаются во время кислотного гидролиз  [c.510]

    Метиловые эфиры (-ОМе) и этиловые эфиры (-ОЕ1) применялись в пептидном синтезе уже Фишером и Курциусом. Снятие этих защит по окончании пептидного синтеза проводят мягким щелочным гидролизом в диокса-не, метаноле (этаноле), ацетоне, ДМФ с добавлением различных количеств воды. Названные алкиловые эфиры следует применять для синтеза коротких пептидов, так как с ростом цепи гидролитическое расщепление затрудняется, а применение жестких условий гидролиза повышает опасность побочных реакций. Следует избегать избытка щелочи, в противном случае может произойти рацемизация и другие побочные реакции. Оба алкильных эфира устойчивы к гидрогенолизу и мягкому ацидолизу. При гидразиноли-зе они переходят в гидразиды, что можно использовать для дальнейшей конденсации фрагментов с помощью азидного метода. При аммонолизе метиловые и этиловые эфиры дают амиды. Это применяют в тех случаях, когда С-концевая аминокислота должна нести амидную группу. [c.117]

    Большое практическое значение имеют также галогензамещенные фениловые эфиры К-замещенных аминокислот, которые были введены в синтетическую пептидную химию Купришевски и сотр. По скорости аминолиза они сравнимы с 4-нитрофениловыми эфирами, но имеют преимущество, так как удаление освобождающегося при аминолизе замещенного фенола осуществляется с меньшими трудностями. Кроме того, трихлорфениловые эфиры очень устойчивы к щелочному гидролизу. 2,4,5- и 2,4,6-Трихлорфениловые эфиры нашли широкое применение при синтезе различных пептидов. [c.152]

    При отщеплении с помощью щелочного гидролиза или катализируемь1х основаниями превращений в присутствии сильных ионообменников существует опасность рацемизации и возможность переэтерификации бензиловых эфиров боковых цепей. В принципе возможно также и аминолитическое и гидразинолитическое отщепление пептида. Для получения амидов и гидра-зидов следует использовать уже обсуждавшиеся модифицированные якорные группировки. [c.193]

    В синтезах пептидов с применением метиловых эфиров для защиты концевой карбоксильной группы могут встретиться затруднения в омылении эфира без сопутствующего частичного гидролиза пептидных связей. Пб этой причине для защиты карбоксильной группы часто прибегают к бензиловым эфирам, которые можно легко получить прямой этерификацией, применяя бензолсульфокислоту [402] или полифосфорную кислоту [403] в качестве катализатора (см. также [2]). Бензиловые эфиры можно снова превратить в свободные карбоновые кислоты каталитическим гидрогенолизом [2, 64], действием металлического натрия в жидком аммиаке [404] или же кислотным или щелочным омылением. Следует отметить, что неги-дролитически, действием бромистого водорода в уксусной кислоте, можно отщепить группу ЫНСООСНаСеНв, но не НСООСНгСвНв [120]. Защита карбоксильной группы в аминокислотах и пептидах превращением в бензиловые эфиры, несомненно, тесно связана с применением карбобензилоксигруппы для защиты аминогрупп (см. раздел Уретановые производные , стр. 209). Обе защитные группы обычно отщепляются при действии одних и тех же реагентов, за исключением одного упоминавшегося метода. [c.245]

    Аналогично использованию многих уретановых производных для защиты аминогрупп существует целый набор простых эфиров, которые можно использовать для защиты карбоксильной группы. Так, бензиловые эфиры (расщепляемые гидрогенолизом илн сильными кислотами) и г/ ет-бутиловые эфиры (расщепляемые кислотной обработкой, но в более мягких условиях) нашли широкое применение для защиты С-терминальиых и боковых карбоксильных групп в производных аминокислот и пептидов. Подобным образом могут быть использованы некоторые содержащие заместители в кольце бензиловые и другие сложные эфиры, аналогичные урета-нам, приведенным в табл. 23.6.1. Эфиры с простыми алкилами (метил или этил), расщепляемые омылением, находят лишь ограниченное применение для защиты карбоксильной функции. Хотя производные пептидов со сложноэфирной группой на С-конце существенно более электрофильны, чем обычные алифатические сложные эфиры (благодаря электронооттягивающим свойствам а-кар-боксамидного заместителя), условия для их расщепления в щелочной среде слишком жестки для пептидов, за исключением самых простых. В общем случае они также непригодны для защиты карбоксильной функции в боковой группе (см. разд. 23.6.2.3) соответствующие уретаны в этих условиях продвергаются внутримолекулярной циклизации в производные гидантоина (см. разд. 23.6,2.1) вместо обычного гидролиза. Тем не менее метиловый и этиловый эфиры являются важными промежуточными продуктами для получения С-терминальных гидразидных производных для продолжения пептидного синтеза азидным методом (см. разд. 23.6.3.4). [c.380]

    Загрязнения образца, обусловленные неподвижными фазами, являются результатами химической нестабильности или разрушения насадки или одновременного элюирования загрязнений, содержащихся в матрице насадки. Первая ситуация, вероятно, наблюдается при использовании привитых силикагелей или ионообменников (на основе смол или силикагеля). Например, почти все доступные сейчас привитые фазы на основе силикагеля получают с силоксановой связью —Si—О—Si— между матрицей силикагеля и привитой группой на поверхности. Хотя эта связь является термически стабильной (допускает использование определенных связанных фаз в газовой хроматографии), реакции, используемые для ее получения, обратимы [116, 117]. Эта часто не принимаемая во внимание характеристика обусловливает гидролитическую нестабильность, которая становится значительной в кислотных или щелочных условиях. Часто случается, что условия, ускоряющие гидролиз привитой фазы (например, очистка пептидов на ig с использованием водной подвижной фазы, содержащей трифтороуксусную кислоту при pH 2- 3), способствуют также удерживанию продуктов гидролиза на насадке (например, октадецилдиметилсиланол удерживается на is в водном растворе). При этом образуется in situ поверхностная фаза с разделительными свойствами, [c.75]

    Определение кислотности должно служить мерилом степени гидролиза казеина. Степень гидролиза белковых веществ определяется двумя величинами во-первых, количеством растворившегося перво-. начального вещества и, во-вторых, глубиной распада, так как гидролитический распад белковых веществ имеет несколько степеней он идет от белкового вещества через образование растворимых в воде альбумоз и пеатонов, полиаептидов и пептидов к аминокислотам и заканчивается выделением аммиака последний может содержаться в вытяжке из казеина в таком количестве, что жидкость приобретает. щелочную реакцию. [c.106]

    Хроматография. Пептиды фракционируют с помощью градиентного элюирования. Стартовый буферный раствор имеет pH 3,Ь Смеситель содержит 2500 мл 0,5 н. буферного раствора pH 5,1. Элюат, вытекающий из колонки, собирают фракциями по 10 мл-Нингидриновую реакцию ставят либо непосредственно с полученным элюатом, либо после его щелочного гидролиза. [c.198]

    Амидные связи способны гидролизоваться как в кислой, так и щелочной средах (см. 7.3.3). Пептиды и белки гидролизуются с образованием либо более коротких цепей — это так называемый частичный гидролиз, либо смеси а-аминокислот при полном гидролизе (рис. 11.1). Щелочной гидролиз практически не используется из-за неустойчивости многих а-ами-,нокислот в этих условиях. Обычно гидролиз осуществляют в кислой среде. Любые пептиды и белки полностью гидролизуются при нагревании в запаянной амАуле (в вакууме или атмосфере азота) с 20% хлороводородной кислотой при нагревании до температуры 110°С в течение 24 ч. Некоторые а-аминокислоты могут претерпевать изменения и в кислой среде, например в этих условиях триптофан полностью разрушается. [c.345]

    Пептидные (амидные) связи способны подвергаться гидролиз в кислой, так и в щелочной среде (см. 8.1.4.2). При этом в за) мости от условий гидролиза могут расщепляться либо все пепти связи — это полный гидролиз до а-аминокислот, составляющих либо только часть этих связей — это неполный, частичный гид до более коротких пептидных фрагментов. На практике предл( тельнее кислотный гидролиз, так как в щелочной среде мног1 аминокислоты в достаточно жестких условиях гидролиза подв ются дальнейшим превращениям. Полный гидролиз пептидов nj дится с целью установления аминокислотного состава пептида нако он не дает информации о последовательности звеньев в i т. е. о первичной структуре. [c.416]

    Впервые принципиальная возможность протекания химических реакций в неглубоко замороженных растворах низкомолекулярных веществ была показана в работах [9, 10, 13-16]. В частности, было обнаружено [13] увеличение (по сравнению с реакцией при комнатной температуре) степени гидролиза Р-лактамного цикла пенициллина-С и 6-аминопенициллановой кислоты в присутствии щелочных катализаторов в замороженных водных растворах реагентов. При исследовании продуктов реакции были найдены олигомерные 7-8-звенные пептиды, соверщенно отсутствовавщие в аналогичном, но не замораживавшемся растворе [9]. Иными словами, олигомеризация протекала только при криогенной обработке, которая интенсифицировала химическую реакцию. По-видимому, это было первое сообщение о поликонденсации в среде замороженного растворителя. [c.71]


Смотреть страницы где упоминается термин Гидролиз щелочной пептидов: [c.162]    [c.38]    [c.92]    [c.202]    [c.268]    [c.202]    [c.268]    [c.512]    [c.245]    [c.120]    [c.609]    [c.173]    [c.231]    [c.274]    [c.69]    [c.69]    [c.163]    [c.387]    [c.57]    [c.131]    [c.761]   
Хроматография на бумаге (1962) -- [ c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Определение иммобилизованных белков, пептидов, аминокислот, нуклеотидов, углеводов и других веществ после их освобождения с помощью кислотного, щелочного нли ферментативного гидролиза



© 2025 chem21.info Реклама на сайте