Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазмиды как векторы для клонирования

    После конструирования вектора рекомбинантные плазмиды смешивают с клетками для трансформации. Например, клетки кишечной палочки со встроенным вектором выращивают на питательной среде, и в процессе этого роста образуются рекомбинантные ДНК, содержащие гены из разных организмов. Поскольку при этом образуются сходные молекулы (клоны), такой процесс называется клонированием. Далее клонированную ДНК вводят в клетки, где и происходит экспрессия генов, т.е. процессы транскрипции и трансляции с образованием необходимого белка. [c.61]


    Чтобы иметь возможность клонировать целый ген, донорную ДНК расщепляют лишь частично. При этом получаются фрагменты разной длины, из которых затем создают геномную библиотеку. Для клонирования крупных фрагментов ДНК были сконструированы векторы на основе бактериофагов X и Р1, а также плазмиды Р. [c.78]

    Клонирование генов (Gene loning) Система методов, использующаяся для получения клонированных ДНК вьщеление нужного гена из какого-либо организма, встраивание его в плазмиду (вектор), введение в клетку организма-хозяина, многократная репликация. [c.550]

    Инициация репликации плазмиды R1 Е. сой регулируется белком-репрессором, кодируемым одним из генов R1. Были получены мутантные плазмиды, которые кодируют аномальный репрессор или же имеют несовершенный механизм регуляции его образования. Некоторые из этих мутантов т-температурочувствительные (репрессор неактивен при 43 °С). При 30 °С репликация идет нормально, и на клетку образуется 1—2 плазмидные копии, а при 43 °С репликация инициируется гораздо чаще, так что в клетке накапливается по нескольку сот плазмид. Небольшой сегмент R1, содержащий участок начала репликации и связанные с ними регулирующие элементы, был использован для создания плазмид-векторов, п-рименяемых при клонировании разнообразных генов. -Преимущество таких векторов заключается в том, что при повышенной температуре с их помощью можно получать множества копий клонируемого гена, а следовательно, и много белка, кодируемого этим геном. [c.306]

    В качестве таких векторов для клонирования (или клонирующих векторов) любых фрагментов чужеродной ДНК используются фаг X и множество различных плазмид. Вектор с клонируемым фрагментом ДНК может проникнуть в клетку Е. соН после того, как клетка обработана ионами Са Такая процедура позволяет конструировать штаммы бактерий, несущих определенные фрагменты чужеродной ДНК (клоны), и размно- [c.276]

    Далее была предпринята попытка усилить сверхпродукцию треонина, увеличив число копий мутантного треонинового оперона в клетке Е. oli путем клонирования этого оперона в составе многокопийной гибридной плазмиды. Полный треониновый оперон клонировали на плазмиде-векторе рВР322. Гибридная плазмида, трансформированная в Е. соИ К12, существовала в микроорганизме стабильно (20 копий в клетку). Приблизительно во столько же раз в клетке увеличилось и количество ферментов, кодируемых треониновым опероном. Количество треонина, синтезируемого такими клетками Е. соИ, достигало 20—30 г/л. Это в два-три раза превышало лучшие мировые достижения того времени. [c.110]


    Для идентификации бактерий иногда используют также метод ДНК-зондов (генных зондов), являющийся разновидностью метода молекулярной гибридизации ДНК—ДНК. Реакция гибридизации ведется в этом случае не между двумя препаратами тотальной ДНК, а между фрагментом нуклеотидной последовательности ДНК (зондом), включающим ген (генетический маркер), ответственный за какую-то определенную функцию (например, устойчивость к какому-нибудь антибиотику), и ДНК изучаемой бактерии. Самым распространенным способом создания генных зондов является выделение специфических фрагментов путем молекулярного клонирования. Для этого вначале создают банк генов изучаемой бактерии расщеплением ее ДНК эндонуклеазами рестрикции, а затем отбирают нужный клон из суммы фрагментов ДНК методом электрофореза с последующей проверкой генетических свойств этих фрагментов методом трансформации. Далее выбранный фрагмент ДНК с помощью фермента лигазы вводят в состав подходящей плазмиды (вектора), а эту комбинированную-плазмиду вводят в удобный для работы штамм бактерий (например, Es heri hia соН). Из биомассы бактерии, несущей ДНК-зонд, выделяют плазмидную ДНК и метят ее, например, радиоизотопной меткой. Затем осуществляют гибридизацию ДНК зонда с ДНК бактерии. Образовавшиеся гибридные участки проявляют методом ауторадиографии. По относительной частоте гибридизации генетического маркера с хромосомой той или иной бактерии делают заключение о генетическом родстве этих бактерий с исследуемым штаммом. [c.197]

    ВАС-клонирование. Идея использовать Р-плазмиду для клонирования больших фрагментов ДНК основана на хорошо известном факте существования Р -плазмид (см. гл. 3) размером до 1 млн.п.н. Векторы рВАС содержат ген герЕ и сайт оп8, которые [c.226]

    Первый плазмидный вектор был получен С.Коэном (1973). Его источником была плазмида Е. соИ Rfi 5 с Mr 65 кДа. Плазмида стала родоначальником серии векторов и других структур. Особое место в генетическом манипулировании занимает плазмида, относящаяся к группе колициногенных плазмид Е. соИ. ol El реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. соИ. [c.118]

    Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в . соН, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид Е. соИ и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем вьщеленные рекомбинантные плазмиды вводят в новый организм. Такие векторы должны содержать ген (или гены), придающий клетке-хозя-ину легко тестируемый признак. [c.124]

    Промежуточный и бинарный векторы. Эти векторы конструируются на основе Ti-плазмид. Промежуточный вектор получают путем ряда сложных операций. Сначала Т-область с помощью рестриктаз вырезают из плазмиды, вставляют в вектор для клонирования в клетке Е. oli и размножают. Затем внутрь Т-области встраивают чужеродный ген и вновь размножают. Полученную рекомбинантную плазмиду вводят в клетки А. tumefa iens, несущие полную Ti-плазмиду. В результате двойного кроссинговера между гомологичными участками Т-область рекомбинантной плазмиды, содержащая чужеродный ген, включается в Ti-плазмиду клетки хозяина, заместив в ней нормальную Т-область. Наконец, бактериями, имеющими Ti-плазмиду со встроенньпли генами, заражают растения, где эти гены встраиваются в геном растительной клетки. [c.147]

    Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]

    Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]


    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

Рис. 7.15. Двухвекторная система экспрессии. Клонированные гены (а и Р) кодируют субъединицы димерного белка ( Р). После одновременной трансфекции клетки двумя плазмидами в ней синтезируются обе субъединицы и собирается функциональный димерный белок. Оба вектора несут сайты инициации репликации, функционирующие в Е. oli (ori ) и в клетках млекопитающих (о/-/= ) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, эукариотический промотор (р) и сигнал полиаденилирования (ра), которые регулируют экспрессию селективного маркерного гена (СМ) и каждого из клонированных генов. Рис. 7.15. Двухвекторная <a href="/info/200746">система экспрессии</a>. <a href="/info/32984">Клонированные гены</a> (а и Р) кодируют субъединицы димерного белка ( Р). После одновременной <a href="/info/1324393">трансфекции клетки</a> двумя плазмидами в ней синтезируются обе субъединицы и собирается функциональный димерный белок. Оба вектора несут <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. oli (ori ) и в <a href="/info/200744">клетках млекопитающих</a> (о/-/= ) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, эукариотический промотор (р) и сигнал полиаденилирования (ра), которые <a href="/info/1899052">регулируют экспрессию</a> <a href="/info/200493">селективного маркерного гена</a> (СМ) и каждого из клонированных генов.
    Е. соИ. При ренатурации одиночных цепей из одной пробирки образуются линейные молекулы. В клетках Е. oli стабильно поддерживаются в виде плазмид и наследуются только кольцевые, а не линейные молекулы, при этом все они несут сайт-специфическую мутацию. Таким образом, с помощью описанного метода можно вносить точ-ковые мутации в клонированный ген, при этом отпадает необходимость во встраивании гена в ДНК фага М13, использовании мутантных штаммов Е. соН типа dut ung и в переносе мутантного гена из Ml 3-вектора в экспрессирующий вектор. [c.163]

    Свойства любого белка зависят от его конформации, которая в свою очередь определяется аминокислотной последовательностью. Некоторые аминокислоты в полипептидной цепи играют ключевую роль в определении специфичности, термостабильности и других свойств белка, так что замена единственного нуклеотида в гене, кодирующем белок, может привести к включению в него аминокислоты, приводящему к понижению его активности, либо, напротив, к улучшению каких-то его специфических свойств. С развитием технологии рекомбинантных ДНК появилась возможность производить специфические замены в клонированных генах и получать белки, содержащие нужные аминокислоты в заданных сайтах. Такой подход получил название направленного мутагенеза. Как правило, интересующий исследователя ген клонируют в ДНК фага M13. Одноцепочечную форму ДНК этого фага копируют с использованием олигонуклеотидного праймера, синтезированного таким образом, чтобы в ген-мишень был встроен определенный нуклеотид. Затем трансформируют двухцепочечными ДНК M13 клетки Е. соИ. Часть образующихся в клетках фаговьгх частиц несет ген, содержащий нужную мутацию. Такие частицы идентифицируют, встраивают мутантный ген в экспрессирующий вектор, синтезируют белок и определяют его активность. Вносить изменения в клонированные гены можно также с помощью плазмид или ПЦР. Обычно заранее не известно, какую [c.175]

    Самый простой способ использования природной способности Ti-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК, а затем использование Ti-плазмид и А. tumefa iens для доставки и встраивания клонированного гена (генов) в геном компетентной растительной клетки. Однако, несмотря на то что Ti-плазми-ды являются эффективными природными векторами, имеется ряд серьезных ограничений на их использование в качестве векторов для клонирования. [c.377]

    Для получения ретровирусного вектора полноразмерную ДНК ретровируса встраивают в плазмиду, с помощью эндонуклеазного расщепления удаляют большую часть гена gag и гены pol и env, оставляя 5 "-концевой участок гена gag и 5 - и 3"-LTR, а затем рядом с / -областью встраивают терапевтический ген, транскрипция которого будет контролироваться 5"-LTR-промотором при необходимости можно встроить и маркерный селективный ген с собственным промотором (рис. 21.3). Такая конструкция позволяет экспрессировать оба клонированных гена, На основе этой схемы созданы различные ретровирусные векторы. Максимальный размер ДНК-вставки, которую может переносить ретровирусный вектор, - примерно 8 т. п. н. [c.488]

    Клонированные гены, рекомбинантные белки, моноклональные антитела, плазмиды, промоторы, векторы, кДНК, моновалентные вакцины [c.535]

    Вектор (Ve tor) Самореплицирующаяся молекула ДНК (например, бактериальная плазмида), используемая в генной инженерии для переноса генов от орга-низма-донора в организм-реципиент, а также для клонирования нуклеотидных последовательностей. [c.545]

    Экспрессирующий вектор (Expression ve tor) Плазмидный вектор, сконструированный таким образом, чтобы клонированный ген экспрессировался только в определенной фазе клеточного цикла и только в течение определенного времени. Для этого в плазмиду встраивают сильный регулируемый промотор. [c.564]

    Нередко возникает задача ввести ген в клетки эукариот, например в дрожжевые клетки, в которых могут нарабатываться белки, прошедшие после их образования необходимые стадии модификации, несвойственные прокариотическим клеткам. Для этой цели используют специальные, так называемые челночные, векторы, которые могут автономтю размножаться как в прокариотических, так и в эукариотических клетках, например в Е.соН и дрожжах. В эукариотические клетки плазмиды вводят на заключительных стадиях, поскапьку многие предварительные этапы клонирования существенно проще проводить в кле гках прокариот. [c.304]


Смотреть страницы где упоминается термин Плазмиды как векторы для клонирования: [c.21]    [c.58]    [c.177]    [c.408]    [c.268]    [c.63]    [c.124]    [c.124]    [c.134]    [c.63]    [c.60]    [c.74]    [c.74]    [c.107]    [c.111]    [c.119]    [c.137]    [c.141]    [c.144]    [c.148]    [c.150]    [c.379]    [c.387]    [c.550]    [c.370]    [c.372]    [c.373]   
Биохимия человека Т.2 (1993) -- [ c.40 , c.41 , c.51 ]

Биохимия человека Том 2 (1993) -- [ c.40 , c.41 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор

Плазмиды и фаг лямбда наиболее подходящие векторы для клонирования ДНК в бактериях



© 2025 chem21.info Реклама на сайте