Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский спектрометр с дисперсией по энергии

    J. РЕНТГЕНОВСКИЙ СПЕКТРОМЕТР С ДИСПЕРСИЕЙ ПО ЭНЕРГИИ [c.210]

Рис. 3.47. Спектр рентгеновского излучения никеля ( о = 40 кэВ), полученный с помощью спектрометра с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная краем поглощения К-излучения никеля. Рис. 3.47. <a href="/info/381131">Спектр рентгеновского излучения</a> никеля ( о = 40 кэВ), полученный с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная <a href="/info/135144">краем поглощения</a> К-излучения никеля.

    Ключом к пониманию работы спектрометра с дисперсией по энергии служит то, что амплитуды импульсов, производимых детектором, в среднем пропорциональны энергии входящего рентгеновского кванта. Основной процесс детектирования, с помощью которого происходит пропорциональное преобразование энергии фотона в электрический сигнал, иллюстрируется на рис. 5.17. Невозмущенный 51 (Ь1)-кристалл обладает зонной структурой (описание зонной структуры дано в обсуждении катодолюминесценции в гл. 3), в которой состояния в зоне проводимости свободны, а состояния в валентной зоне заполнены. При захвате высокоэнергетического фотона электроны перебрасываются в зону проводимости, оставляя дырки в валентной зоне. При наличии напряжения смещения электроны и дырки разделяются и собираются электродами, расположенными на поверхностях кристалла. Захват фотонов осуществляется путем фотоэлектрического поглощения. Падающий рентгеновский фотон вначале поглощается атомом кремния и испускается высоко-энергетический электрон. Затем этот фотоэлектрон по мере того, как он движется в кремниевом детекторе и испытывает неупругое рассеяние, генерирует электронно-дырочные пары. Атом кремния остается в состоянии с высокой энергией, поскольку на испускание фотоэлектрона потребовалась не вся энергия рентгеновского кванта. Эта энергия впоследствии выделяется либо в виде оже-электрона, либо в виде кванта рентгеновского характеристического излучения кремния. Оже-электрон испытывает неупругое рассеяние и также создает электронно-дырочные пары. Кванты рентгеновского излучения кремния могут повторно поглощаться, инициируя процесс снова, или неупруго рассеяться. Таким образом, имеет место последовательность событий, в результате чего вся энергия первичного фотона остается в детекторе, если только излучение, генерируемое в одном из актов [c.213]

    Рентгеновская флуоресценция (РФ) — это инструментальный аналитический метод для элементного анализа твердых и жидких проб с минимальной пробоподготовкой. Пробу облучают рентгеновским излучением. Атомы в пробе возбуждаются и испускают характеристическое рентгеновское излучение. Энергия (или длина волны) этого характеристического излучения различна для каждого элемента. Это дает основу для качественного анализа. Число фотонов характеристического рентгеновского излучения элемента пропорционально его концентрации, что обеспечивает возможность количественного анализа. В принципе, могут быть определены все элементы от бора до урана. Определение следов элементов (млп ), а также концентраций примесных и основных элементов (%) может быть выполнено из одной пробы. В зависимости от того, как измеряют характеристики рентгеновского излучения, различают рентгенофлуоресцентную спектрометрию с волновой дисперсией (РФСВД) и с энергетической дисперсией (РФСЭД). [c.57]


    Серии линий рентгеновского излучения. На рис. 3.38 представлена подробная диаграмма серий линий рентгеновского излучения, которые существуют для каждого элемента. Степень сложности серии является функцией атомного номера элемента. Так для углерода, у которого имеются два электрона на А-оболочке и четыре электрона на L-оболочке, возможна лишь генерация линий Ка рентгеновского излучения. Хотя электроны с L-оболочки углерода могут быть удалены при столкновении, на Л4-оболочке нет электронов, которые бы смогли заполнить вакансию. Натрий (2=11) имеет один электрон на Л4-оболоч-ке, так что могут испускаться как Ка, так и A -линии рентгеновского излучения. Для тяжелых элементов со сложной структурой оболочек, таких, как свинец, серия линий рентгеновского излучения становится более сложной. В гл. 6 приведены примеры рентгеновских спектров, полученных в диапазоне энергий 1—20 кэВ с помощью рентгеновского спектрометра с дисперсией по энергии для титана А , Ар (рис. 6.2), меди Ка, Ар, L (рис. 6.8), а также L-серии и М-серии для тербия (рис. 6.9). Из этих спектров видно, что сложность спектра возрастает с атомным номером. Отметим, что на этих рисунках многие линии не разрешаются, например Ка —Ааг, из-за слабого разрешения спектрометра с дисперсией по энергии (см. гл. 5). [c.74]

    Выходящее из образца излучение разлагают в спектр (т. с. получают зависимость интенсивности I от энергии Е) с помощью рентгеновских спектрометров с волновой (ВДС) или энергетич. (ЭДС) дисперсией. Действие ВДС-спектро-метров (рис. 1) основано на условии Вульфа-Брэгга  [c.443]

    Рентгеновский спектрометр с дисперсией по энергии является удобным средством для качественного рентгеновского микроанализа. Тот факт, что весь спектр, представляющий интерес (область от 0,75 до 20 кэВ (или до энергии пучка)), может быть получен одно временно, обеспечивает возможность быстрой оценки состава образца. Так как эффективность 51 (Ь1)-детектора фактически постоянна (около 100%) в диапазоне энергий 3—10 кэВ, относительные интенсивности пиков для серий рентгеновских линий элементов близки к значениям, генерируемым в образце. В качестве негативной стороны следует отметить сравнительно низкое по сравнению с кристалл-дифракционным спектрометром энергетическое разрещение спектрометра с дисперсией по энергии, что часто приводит к проблемам, связанным с взаимодействием спектров, таких, как невозможность разделения линий рентгеновских серий разных элементов при низких энергиях (-<3 кэВ). Кроме того, наличие спектральных артефактов, таких, как пики потерь или суммарные пики, усложняет спектр, особенно когда рассматриваются пики с низкой относительной интенсивностью. [c.272]

    Элементы, используемые для препарирования образцов, не должны маскировать элементы, подлежащие анализу. Если исследуются спектры характеристического рентгеновского излучения элементов, то возможно увидеть перекрывание линий их К-, Ь- и М-излучения, в особенности в спектрах, полученных с помощью рентгеновского спектрометра с дисперсией по энергии с его плохим разрешением по энергии. Пока не приняты соответствующие меры Ь- или М-излучение одного элемента может перекрываться и маскировать /(-излучение анализируемого элемента. В табл. 6.1 гл. 6 указывается тип перекрытий, который может случиться для некоторых элементов, используемых при препарировании объекта, и некоторых из наиболее легких элементов, представляющих интерес для биологии. [c.275]

    Относительные интенсивности линий. Хотя имеется большое число возможных переходов для заполнения вакансий на оболочке, за счет которых возникают линии рентгеновского излучения различной энергии, например Ка и К или вплоть до 25 различных -линий, вероятность каждого типа перехода меняется в значительной степени. Относительные интенсивности линий означают относительные вероятности образования линий внутри серии, т. е. линий, возникающих за счет ионизации данной оболочки. Отметим, что относительное соотношение линий устанавливается внутри серии, например такой, как -серия эти величины не включают в себя относительные соотношения линий между сериями, как, например, /С-серии по отношению к -серии. Относительные интенсивности линий в серии сложным образом меняются в зависимости от атомного номера. Соотношение линий в /С-серии хорошо известно, но в - и М-се.-риях они известны гораздо меньше. В табл. 3.7 в первом приближении приведены относительные интенсивности линий значительной интенсивности относительные интенсивности линий являются полезными при интерпретации спектров, наблюдаемых с помощью рентгеновского спектрометра с дисперсией по энергии. [c.76]

    Обычно перед исследованием принято покрывать образцы тонким проводящим слоем, чтобы минимизировать нежелательный нагрев и предотвратить возникновение локального заряда. Однако при условии, что образец находится в хорошем контакте с подложкой, без процедуры покрытия в основном обходятся тогда, когда образец должен анализироваться рентгеновским спектрометром с дисперсией по энергии. Более высокие токи образцов и более продолжительные времена счета, обычно необходимые для анализа с кристалл-дифракционными спектрометрами, могут вызвать необходимость нанесения покрытия на образец до того, как он будет помещен в микроанализатор. Процедуры нанесения тонких слоев покрытий на образцы рассматривались в гл. 10 и не будут здесь указаны. [c.286]


    Анализ с помощью спектрометра с дисперсией по энергии в материаловедении. Из-за большого числа элементов, по кото рым проводят анализ в материаловедении, число возможных взаимных влияний значительно больше, чем прн анализе биоло гических образцов, и исследователь во избежание ошибок дол жен постоянно контролировать себя. Особенно коварно взаим ное влияние в первых сериях переходных металлов, где /(р-ли ния элемента взаимодействует с /(а-линией следующего элемен та с более высоким атомным номером, как показано в табл. 6.2 В аналитических системах для количественного анализа с по мощью 51 (Ь1)-спектрометра можно проводить коррекцию этих помех. При качественном анализе, однако, когда рентгеновские линии малых добавок искажаются пз-за влияния линий основных элементов, часто бывает невозможно обнаружить присутствие малой добавки. [c.284]

    Из-за требования, согласно которому в системе с дисперсией по длинам волн источник рентгеновского излучения должен находиться точно на круге фокусировки Роуланда, сканирование по большой площади может приводить к падению интенсивности излучения на краях области сканирования. Это явление проявляется заметнее с повышением разрешения кристалл-дифракционного спектрометра. Одним из способов контроля, насколько серьезно падение интенсивности рентгеновского излучения, является получение изображений в рентгеновских лучах образца из чистого элемента для различных размеров растра. Это может быть выполнено в каждом спектрометре для каждого кристалла. К счастью, такие связанные с фокусировкой трудности отсутствуют в системе с дисперсией по энергии, которая позволяет рассматривать большую площадь образца даже при коллимации (рис. 5.41, гл. 5). [c.300]

    Следует рассмотреть случаи анализа при помощи детектора с дисперсией по энергии или кристалл-дифракционного спектрометра, смонтированных в обычном РЭМ. Если поверхность образца плоская и гладкая, следует учесть лишь несколько препятствий для проведения количественного анализа. Наиболее важными из них являются коррекция фона, которая будет рассматриваться в гл. 8, и точное знание угла выхода рентгеновского излучения г ). В РЭМ для получения приемлемого угла выхода рентгеновского излучения образец обычно наклоняют. Неопределенности в значении г]) обычно влияют на расчеты поправки на поглощение их роль увеличивается с уменьшением ф [126]. Таким образом, необходимо иметь значение ч1з>30 . Кроме того, исключительно важно, чтобы измерения на образце и эталоне проводились при одинаковых значениях угла выхода рентгеновского излучения. [c.14]

    Большинство результатов рентгеновского микроанализа в биологии можно обрабатывать полуколичественно, не прибегая к каким-либо численным схемам, и полезную информацию можно получать простым сравнением различных рентгеновских спектров. Такие спектры имеют вид либо полученных на самописце графиков, либо фотографий с экрана видеоконтрольного устройства спектрометров с дисперсией по энергии, которые являются основной частью современных рентгеновских аналитических систем. Можно также получить распределение элементов вдоль линии на образце или построить карту распределения элементов по образцу. Однако такие полуколичественные методы позволяют лишь обнаружить возможное присутствие отдельных элементов в образце и в лучшем случае установить, [c.68]

    Фон от прибора. Для получения фона от прибора пучок направляется на диск из спектроскопически чистого углерода толщиной приблизительно 2 мм, и с помощью спектрометра с дисперсией по энергии регистрируется полный спектр. Диаметр диска должен на несколько миллиметров превышать размер площадки, которую предполагается исследовать и анализировать в микроскопе. Значения ускоряющего напряжения и тока пучка должны выбираться такими, какие обычно используются в эксперименте, т. е. 10—20 кВ и 0,1—5 нА, а живое время должно составлять 100—200 с. При тщательном исследовании в спектре будут обнаруживаться характеристические пики элементов, дающих вклад в фоновое излучение. Наиболее часто присутствующими элементами являются медь и железо — основные составляющие материалов, использующихся при изготовлении прибора. В большинстве современных приборов, пучок в которых хорошо коллимирован, эти пики будут отсутствовать или интенсивность их будет очень низкой, но если имеются рентгеновские линии, необходимо предпринять попытки для удаления этих сигналов из регистрируемого спектра. Детали того, как это можно сделать, приведены в гл. 5. [c.90]

    Профиль характеристического рентгеновского пика, полученного с помощью спектрометра с дисперсией по энергии, хорошо аппроксимируется гауссовой (нормальной) функцией распределения вероятности. То есть содержимое У, любого данного канала, включающего данную гауссову кривую, можно рассчитать по формуле [c.121]

    В первой книге монографии известных американских специалистов изложены стандартные методы растровой электронной микроскопии и некоторые аспекты рентгеновского микроанализа. Рассмотрены особенности электронной оитики приборов, взаимодействие электронов с твердым телом, теория формирования изображения в растровом микроскопе, а также разрешение, информативность режимов вторичных и отраженных электронов, рентгеновская спектрометрия с дисперсией по энергии и длине волны и качественный рентгеновский микроанализ. [c.4]

    КД — конечная диафрагма ТД — твердотельный детектор электронов Э — Т — детектор Эверхарта — Торили ФЭУ — фотоумножитель С — сцинтиллятор РД — рентгеновские спектрометры (кристалл-днфракционные н/нлн с дисперсией по энергии) ЭЛТ — электронно-лучевые трубки, предназначенные для наблюдения и фотографирования изображения. Цифры 1—9 обозначают последовательные положения пучка при сканировании. [c.99]

    Усовершенствование рентгеновского спектрометра с дисперсией по энергии привело к тому, что рентгеновская спектрометрия стала доступна практически всем типам электронно-зондовых приборов. Следует, однако, отметить, что из-за особенностей метода спектрометрии с дисперсией по энергии искажения в идеальный рентген01вский спектр ( спектральные артефакты ) вводятся в процессе самого измерения, с чем приходится иметь дело в практической аналитической спектрометрии. В последующем обсуждении мы рассмотрим эти артефакты на каждой стадии процесса детектирования и усиления. [c.213]

    Общая квантовая эффективность есть выраженная в процентах часть всего входящего б спектрометр. рентгеновского излучения, которая подсчитывается. При низ ких тока.х пучка системы, содержащие спектрометры с дисперсией ио энергии, имеют обычно больщую скО рость счета на единицу тока, что обусловлено частично более высокой геометрической эффективностьк> сбора и частично более высокой собственной квантовой эффективностью детектора. Графики рис. 5.51, рассч итанные в [54],. демонстрируют, что детектор толщиной 3 мм в соединении с 8-микронным окном из Ве будет регистрировать почти 100% падающего на детектор рентгеновского излучения с энергией в. [c.257]

    Анализ образцов в виде тонкой фольги представляет собой простейшую аналитическую проблему. До некоторой степени микрорентгеноспектральный анализ образцов в виде тонкой фольги проще, чем анализ плоских массивных образцов. Когда образец очень тонкий, упругое рассеяние и потери энергии уменьшаются до такой степени, что эффекты атомного номера исключаются или в лучшем случае оказываются второстепенными. Поскольку сечения как упругого, так и неупругого рассеяния уменьшаются с увеличением энергии пучка, образцы в виде тонкой фольги лучше всего анализировать с помощью аналитического электронного микроскопа (АЭМ), который обычно представляет собой комбинацию просвечивающего и просвечивающего растрового электронных микроскопов, работающих при ускоряющем напряжении 100 кВ и снабженных рентгеновским спектрометром с дисперсией по энергии. В случае отсутствия АЭМ можно использовать РЭМ или рентгеновский микроанализатор, работающий при ускоряющем напряжении 40—60 кВ, хотя роль эффектов атомного номера в зависимости от состава фольги или ее толщины может стать значительной. Как поглощение, так и флуоресценция также становятся незначительными для тонкой фольги в зависимости только от толщины фольги и независимо от энергии пучка. Таким образом, при анализе образцов в виде тонкой фольги можно пренебречь всеми матричными эффектами — влиянием атомного номера, поглощением и флуоресценцией, па которые должна вводиться поправка при анализе массивных образцов. В результате анализ тонкой фольги можно провести ири помощи простого метода относительной чувствительности, [169, 170]. [c.57]

    Для измерения энергии и интенсивности характеристического рентгеновского излучения используют спектрометры с волновой и энергетической дисперсией (рис. 10-2.9). Энергодисперсионные рентгеновские спектрометры регистрируют одновременно все длины волн в спектре, позволяя проводить определение элементов от Ве до и (при использовании безоконных детекторов). Эти спектрометры состоят из полупроводникового детектора (кремния, легированного литием), преобразующего энергию фотонов в электрические импульсы, напряжение которых пропорционально энергии фотонов. Таким образом происходит дискриминация фотонов по энергиям. Разрешение энергодисперсионных спектрометров составляет около 140 эВ для линий средней энергии [c.333]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]

    Одним из наиболее коварных артефактов, связанных с установкой детектора в электронно-зондо-вом приборе, является появление одной или более наводок заземления. Обычно мы предполагаем, что металлические детали системы микроскоп — спектрометр находятся под потенциалом земли и ток между ними отсутствует. В действительности, между деталями могут иметься небольшие различия в потенциале, от милливольт до вольт по порядку величины. Такие различия -в потенциале могут приводить к появлению токов, изменяющихся от микроампер до нескольких ампер. Зги избыточные токи называются наводками заземления или токами заземления, так как они текут в деталях системы, которые номинально заземлены, например шасси или внешние экраны коаксиальных кабелей. Так как наводки заземления переменного тока связаны с электромагнитным излучением, такие токи, текущие в экранированном коаксиальном кабеле, могут модулировать слабые сигналы, идущие по центральному проводнику. В системах спектрометров с дисперсией по энергии обрабатываемые сигналы очень малы, особенно в детекторе и предусилителе, следовательно, для сохранения сигнала следует всячески избегать наводок заземления. Влияние наводок заземления может проявляться в потере разрешения спектрометра, в искажении формы пика, искажении формы фона и/или в неправильной работе цепи коррекции мертвого времени. Пример влияния наводки заземления на измеренный спектр показан на рис. 5.35. Обычный Ка—i p-спектр Мп (рис. 5.35, а) может превратиться в спектр с кажущимся набором пиков (рис. 5.35, б), в котором каждый из основных пиков имеет дополнительный. На рис. 5.35,6 можно наблюдать и промежуточную ситуацию, в которой ухудшается разрешение главного пика без появления второго отчетливого пика. Объяснение этого частного, Bbi3iBaHHoro наводкой заземления артефакта иллюстрирует рис. 5.36. Если посмотреть форму сигнала наводки заземления, проходящего через медленный канал цепи обработки, то можно установить, что он является периодическим, но не обязательно синусоидальным, с большим разнообразием возможных форм, как показано на рис. 5.36. Когда импульсы случайного сигнала, соответствующего характеристическому рентгеновскому излуче- [c.234]

Рис. 6.1. Энергии рентгеновских линий, регистрируемых спектрометром с дисперсией по энергии в диапазоне 0,75—ЮкэВ [109]. Рис. 6.1. Энергии рентгеновских линий, регистрируемых спектрометром с дисперсией по энергии в диапазоне 0,75—ЮкэВ [109].
    Предыдущий пункт приводит прямо к обсуждению минимально возможного размера зонда для рентгеновского анализа. Для каждого типа источника и напряжения, как детально показано в гл. 2 (рис. 2.16), для любого заданного размера зонда существует максимальное значение тока. Для обычных источников из вольфрама ток зонда изменяется пропорционально диаметру луча в степени 8/3 И имеет при 20 кВ типичные значения Ю А для зонда диаметром 20 нм (200 А), 10 А — для 100 нм (1000 А) и 10 А —для 1000 нм (10000 А). В спектрометре с дисперсией по энергии три помощи детектора диаметром 4 мм, находящегося на расстоянии 1 см от образца из чистого никеля, можно получить скорость счета около 10 имп./с для угла выхода 35° при диаметре зонда 20 нм (10 А) и 100%-ной квантовой эффективности. Как следует из рис. 5.33, скорость счета 10 имп./с является слишком высокой для реализации максимального энергетического разрешения, так что оператор должен либо отодвинуть детектор, уменьшить постоянную времени спектрометра с дисперсией по энергии, либо уменьшить ток зонда, перейдя к пятну меньшего размера. С другой стороны, соответствующая скорость счета для спектрометра с дисперсией по длинам волн составляла бы около 100 имп./с, что слишком мало для практического использования. Для массивных образцов (толщиной более нескольких микрометров) пространственное разрешение при химическом анализе не улучшается при использовании зондов с диаметром значительно меньше 1 mikm, поскольку объем области генерации рентгеновского излучения определяется рассеянием и глубиной проникновения электронов луча, а не размером зонда. Это демонстрируется на рис. 5.54, где показана серия расчетов рассеяния электронов и распределения генерации рентгеновского излучения, выполненных по методу Монте-Карло для зонда диаметром 0,2 мкм и гипотетического включения ТаС размером 1 мкм в матрицу пз Ni — Сг. Легко видеть, что траектории электронов и, следовательно, область генерации рентгеновского излучения, особенно при высоком напряжении, заметно превышают 1 мкм или 5- кратный диаметр зонда. Предельное значение диаметра зонда при исследовании таких образцов ниже нескольких сотен нанометров, поэтому полный анализ можно выполнить при форсированпи тока зонда до 10 нА и использова- [c.262]

    ГИИ, с другой стороны, имеется ряд осложнений, которые могут привести ничего не подозревающего 0перат0 ра к затруднениям. Артефакты появляются на каждой стадии процесса спектральных измерений. Артефакты процесса обнаружения представляют собой ущирение и искажение формы пика, пики потерь кремния, поглощение и пик внутренней флуоресценции кремния. Артефакты, возникающие пря обработке импульсов, включают в себя наложение импульсов, суммарные пики и чувствительность к ошибкам при коррекции мертвого времени. Дополнительные артефакты появляются из-за окружения системы полупроводниковый детектор — микроскоп и включают микрофонные эффекты, наводки с земли и загрязнение маслом и льдом деталей детектора. Как в кристалл-дифракционном, так и в спектрометре с дисперсией по энб ргии может регистрироваться паразитное излучение (рентгеновское и электроны) от окружающих образец предметов, но из-за большего телесного угла сбора спектрометр с дисперсией по энергии более подвержен влиянию паразитного облучения. Однако из-за большого угла сбора такой спектрометр менее чувствителен к эффектам дефокусировки спектрометра при изменении положения образца. [c.265]

    В итоге это сравнение наводит на мысль, что достоинства спектрометров с дисперсией по энергии и кристалл-дифракционных компенсируют слабые стороны каждой из систем. Таким образом, видно, что два типа спектрометров скорее дополняют, а не конкурируют друг с другом. Ясно, что на современной стадии развития рентгеновского микроанализа оптимальной спектрометрической системой для анализа с манспмальными возможностями является комбинация спектрометров с дисперсией по энергии и с дисперсией по длинам волн. В результате революции, происшедшей в развитии лабораторных м,иня-ЭВМ, стали доступными автоматические системы нескольких фирм-изготовителей, которые эффективно сопрягаются с кристалл-дифракционным спектрометром и с полупроводниковым детектором. [c.265]

    В качестве вспомогательного средства для качественного анализа с использованием полупроводникового спектрометра в работе представлены графически рентгеновские линии, наблюдаемые в спектрах, полученных с помощью высококачественного спектрометра с дисперсией ло энергии (интегральная интенсивность 5 000 000 импульсо В) в диапазоне 0,70—10 кэВ (рис. 6.1). С помощью такого графика удобно определять энергии рентгеновских линий и, кроме того, быстро оценивать возможные эффекты их взаимного влияния. Показано также влияние спектрального уширения для полупроводникового спектрометра с разрешением 155 эВ, что позволяет оценить перекрытие пиков. Рис. 6.1 в сочетании с таблицей (или / LM-маркерами ) энергий рентгеновских линий является вспомогательным для качественного анализа средством. Для правильной идентификации пиков необходимо знать точные (до 10 эВ) значения энергий рентгеновских линий. [c.270]

    Следует выбрать самые интенсивные пики в коротковолновой области сканирования кристалла LiF и найти их длины волн. Используя полный справочник рентгеновских лучей, например [113], определить возможные элементы, которые могут дадать рассматриваемые пики в излучении Kai, 2 или Lai, 2-В параллель, используя данные о серии линий, полученные при качественном анализе с помош,ью спектрометра с дисперсией пО энергии, если какой-либо элемент уже предварительно связан с пиком Kai,2(n= ), исследователь должен сразу же отыскать сопутствующий им пик И снова отнощение интенсивностей Ка и должно равняться приблизительно 10 1. Однако из-за изменений в эффективности кристалла и детектора ожидаемое отношение может выполняться не всегда. Например, в спектре d (рис. 6.12) эффективность детектора с коротковолновой стороны Л"-края поглощения аргона приблизительно 2 раза выше. Следовательно, пик L i, интенсивность которого должна составлять примерно 60% от интенсивности La, на самом деле больше. Удвоение эффективности до /(-края поглощения аргона обусловлено тем, что в проточном пропорциональном детекторе рентгеновского излучения этого спектрометра используется газ Р-10 (90% Аг—10% метана). При заданных размерах детектора и давлении газа Р-10 некоторая часть рентгеновского излучения с длиной волны, большей, чем длина волны края поглощения, проходит через газ, не взаимодействуя с ним. Для рентгеновского излучения с длинами волн короче длины волны края поглощения большая часть (приблизительно в 2 раза) будет взаимодействовать с газом и, следовательно, будет обнаружена. Следует также отметить, что разрешения кристалл-ди-фракцнонного спектрометра с некоторыми кристаллами, например LiF и кварцем, дое-таточно, чтобы продемонстрировать по крайней мере некоторое разделение пика Ка на Kai и Ка.2 с отношением интенсивностей Ка. Ка2=2 . Если подобно этому рассматривать пик La, то следует искать полную L-серию. Необходимо отметить, что кроме тех L-линий, которые указаны на рис. 6.1 (т. е. Lai, 2, Lfiu L 2, L 3, L u Lyz, Li, Lv), благодаря прекрасному разрешению и отношению пик/фон можно обнаружить их больше. При идентификации серии линий возможна ситуация, когда из-за ограничений использования кристаллов по длине волны может быть обнаружен только главный пик (например, Gex с LiF, а Ge/ g лежит за пределами диапазона кристалла). С учетом этого факта в спектре, полученном с по- [c.294]

    Метод получения изображения рентгеновском излучении при сканировании по площади представляет по существу растровый рентгеновский микроскоп. Усиленный сигнал от детекторной системы—спектрометра с дисперсией по энергии или кристалл-дифракционного спектрометра — используется для модуляции яркости электронно-лучевой трубки (ЭЛТ), которая сканируется синхронно с электронным пучком. Таким образом, изображение на экране ЭЛТ получают за счет изменения интенсивности рентгеновского излучения с поверхности образца. Здесь используется такая же система развертки с регулировкой увеличения и такой же усилитель, что и в растровом электронном микроскопе (гл. 4). Электронный пучок может сканировать по линии в направлениях X или У и давать распределение рентгеновского излучения по линии. Пример типичного сканирования по линии для Со и Сг по поверхности окисленного высокотемпературного сплава приведен на рис. 5.14 (гл. 5). Электронный пучок можно, конечно, развертывать и по площади н получать изображение в рентгеновских лучах. Изображение в рент-геповски.х лучах при сканировании по площади может содержать тона от черного до белого в зависимости от условий эксперимента. Места с высокой концентрацией исследуемого элемента в пределах области сканирования будут на изображении почти белыми, серыми, когда концентрация элемента ниже, и черными всюду, где элемент отсутствует. Пример, иллюстрирующий результаты исследования руды, приведен на рис. 6.15. [c.296]

Рис. 6.16. Изображения в рентгеновском излучении при сканнро-ваиии по поверхиости образца из композиционного материала А1— АУ, полученные в РЭМ с помощью спектрометра с дисперсией по энергии. Рис. 6.16. Изображения в <a href="/info/28163">рентгеновском излучении</a> при сканнро-ваиии по поверхиости образца из <a href="/info/1904">композиционного материала</a> А1— АУ, полученные в РЭМ с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии.
Рис. 7.17. Рентгеновские спектры, полученные с помощью спектрометра с дисперсией по энергии, от сферической частицы диаметром 20 мкм эталонного образца стекла К-411 (15% MgO, 55% SiOo, 15% aO, 15% FeO). Рис. 7.17. <a href="/info/2755">Рентгеновские спектры</a>, полученные с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии, от <a href="/info/3890">сферической частицы</a> диаметром 20 мкм <a href="/info/1640370">эталонного образца</a> стекла К-411 (15% MgO, 55% SiOo, 15% aO, 15% FeO).
    Поскольку проблема компенсации фона вычитанием или другими способами является критич НОЙ дри всех измерениях с помощью спектрометра с дисперсией по энергии, имеет смысл уделить внимание обзору того, что известно по этому вопросу, а также того, какие способы вычитания фона используются в настоящее время. В общем имеются два подхода к решению этой проблемы. В одном из иих измеряется или рассчитывается функция энергетического раапределения непрерывного излучения, и ее комбинируют затем математически с передаточной характе(ристикой детектора. Полученная в результате функция используется затем для расчета спектра фона, который можно вычитать из экспериментального спект1рального распределения. Этот метод можно называть моделированием фона. В другом подходе обычно не касаются физики генерации и эмиссии рентгеновского излучения и фон рассматривается как нежелательный сигнал, от воздействия которого мож,но избавиться математической фильтрацией или модификацией частотного распределения спектра. Примерами последнего способа являются цифровая фильтрация и фурье-анализ. Этот метод можно назвать фильтрацией фона. Следует напомнить здесь, что реальный рентгеновский спектр состоит из характеристического и непрерывного излучений, интенсивности которых промодулированы эффектами статистики счета. При вычитании фона из спектра любым способом остающиеся интенсивности характер-нстических линий все еще промодулированы обеими неопределенностями. Мы можем вычесть среднюю величину фона, но эффекты, связанные со статистикой счета, исключить невозможно. На практике успешно применяются оба вышеописанных метода вычитания фона. Эти методы будут обсуждаться в следующих двух разделах. [c.106]

    Для определения значения постоянной Крамерса кв необходимо выполнить абсолютные измерения спектрального распределения непрерывного рентгеновского излучения. Выполнить таккс измерения на микроанализаторе с кристалл-дифракциои-ным спектрометром чрезвычайно трудно, так как эффективность спектрометра изменяется с энергией и, более того, обычно неизвестным образом. В дисертации Грина [65], опубликованной за несколько лет до появления детекторов с дисперсией 1го эн е ргии, описан ряд измерений эффективности генерации как непрерывного, так и характеристического рентгеновского излучений, в которых для прямого измерения спектров рентгеновского [c.108]

Рис. 8,20. Рентгеновский спектр ZnWO , полученный с помощью спектрометра с дисперсией по энергии. Рис. 8,20. <a href="/info/2755">Рентгеновский спектр</a> ZnWO , полученный с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии.
    Приборы РФС состоят из рентгеновского источника, держателя пробы и спектрометра. Первичное рентгеновское излучение от источника используют для возбуждения атомов в пробе. Спектрометр измеряет длину волны (или энергию) и интенсивность (флуоресцентного) излучения, испускаемого пробой. Поскольку устройство спектрометров с волновой и энергетической дисперсией совершешю различно, они будут рассмотрены по отдельности. Наиболее широко используемым источником первичного рентгеновского излучения в РФС являются рентгеновские трубки. В приборах с энергетической дисперсией можно использовать радиоизотопные источники. [c.68]

    В спектрометрах с энергетической дисперсией дисперсия (выделение специфичной энергии) и счет числа рентгеновских фотонов (обладающих этой специфичной энергией) выполняется в один этап. Спектрометры с энергетической дисперсией построены на основе полупроводникового кристалла, охлаждаемого жидким азотом. Используют монокристаллы легированного литием кремния 81(Ы) или высокочистого германия, ВЧСе. В этих кристаллах разность энергии между валентной зоной и зоной проводимости составляет величину порядка 4эВ. При комнатной температуре некоторое число электронов находится в зоне проводимости, так что кристалл является (полу)проводником. При охлаждении кристалла до температуры жидкого азота (—196° С) почти все электроны остаются в валентной зоне и при наложении на кристалл напряжения ток протекать не может. Литий вводят в кристалл кремния, чтобы скомпенсировать примесные носители заряда. [c.78]


Смотреть страницы где упоминается термин Рентгеновский спектрометр с дисперсией по энергии: [c.7]    [c.8]    [c.66]    [c.11]    [c.232]    [c.284]    [c.289]    [c.89]    [c.154]    [c.274]    [c.314]   
Смотреть главы в:

Растровая электронная микроскопия и рентгеновский микроанализ том 1 -> Рентгеновский спектрометр с дисперсией по энергии


Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.2 , c.140 , c.210 ]




ПОИСК







© 2025 chem21.info Реклама на сайте