Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы на основе кремния

    Конечно, обработка приведенного здесь материала о различных ПАВ и обычно встречающихся ограничений, должна быть критической. Главный акцент сделан на материалы, имеющие коммерческий спрос, и на разработки недавнего времени. В первом разделе мы коснемся производства самого сырья, а во втором — его дальнейшей переработки в неионогенные, катионные, анионные, а также амфотерные ПАВ. Приведены все основные производители каждого из классов ПАВ и исходного сырья. Предпринята попытка показать место этих ПАВ на рынке, где они могут быть использованы, в частности в тех случаях, когда взаимосвязь свойства-структура однозначно установлена. Дополнительно в данный обзор включены две группы особенных ПАВ — фторсодержащих и ПАВ на основе кремния. Повышенная поверхностная активность этих веществ и характерные области использования будут интересны всем, кто работает над их синтезом, свойствами и применением. [c.13]


    Силикатный кирпич. Сырьем для силикатного кирпича служит известь и кварцевый песок. При приготовлении массы известь составляет 5,5—6,5 % по массе, а вода — 6—8 %. Подготовленную массу прессуют и затем подвергают нагреванию (при температуре около 170 °С) в автоклаве под действием пара высокого давления. Химическая сущность процесса твердения силикатного кирпича совершенно иная, чем при твердении связующего материала на основе извести и песка. При высокой температуре значительно ускоряется кислотно-основное взаимодействие гидроксида кальция Са(ОН)г с диоксидом кремния ЗЮг с образованием соли — силиката кальция СаЗЮз. Образование последнего и обеспечивает [c.77]

    ЖАРОПРОЧНОСТЬ — свойство конструкционного материала сохранять высокую сопротивляемость пластичному деформированию при значительном повышении температуры. В связи с развитием новой техники Ж. становится одной из важнейших характеристик материалов. Важной группой жаропрочных материалов являются керметы (металлокерамические изделия), неорганические полимерные материалы на основе кремния, жаростойкие бетоны и др. [c.94]

    Нитрид кремния используется в качестве компонента жаростойких и химически устойчивых композиционных материалов. Он нашел также применение в микроэлектронике в качестве диэлектрика и высокотемпературного полупроводника. Карбид кремния — абразивный материал для шлифовальных кругов, матрица для порошковой металлургии, компонент для огнеупоров. К тому же карбид кремния является основой полупроводниковых диодов и фотодиодов. [c.214]

    Одним из возможных решений данной проблемы является применение термодиффузионных покрытий на основе кремния. Обладая наименьшим химическим сродством к углероду, кремний является эффективным барьером на пути диффузии углерода в металл и должен подавлять коксоотложение на поверхности стали. Сложность проблемы заключается в разработке режима насыщения, способствующего образованию равномерных диффузионных слоев на сталях, применяемых для изготовления змеевиков трубчатых печей, и незначительным образом изменяющего механические свойства материала. [c.3]

    Специфические свойства кремний-органических смол позволяют использовать их для изготовления деталей, работающих как при очень низкой (—60°С), так и при высокой температуре. Стеклопластики на основе кремний-органических смол вьщерживают длительное нагревание при температуре 260° С и кратковременное нагревание до температуры около 540° С. Предел прочности на разрыв таких стеклотекстолитов при 260° С сохраняется равным 2100 кГ/см (у исходного материала — 2450 кГ/см ). Предел прочности на разрыв стеклотекстолита на основе полиэфирных смол достигает величины 4200 кГ/см при удельном весе 1,7. [c.54]


    Термореактивный материал РТП-200 изготовлен на основе кремний-органической смолы и кремнеземного стекловолокна внешний вид до переработки — перепутанные волокна темно-коричневого цвета. Материал РТП-200 предназначается для изготовления методом прямого горячего прессования деталей электроизоляционного назначения, работающих кратковременно при высоких температурах. [c.172]

    Шлифовальная шкурка состоит из основы, клеящего вещества и абразивного материала. Основой для изготовления шкурки служит бумага или хлопчатобумажная ткань. В качестве абразивных материалов для шкурки применяют карбид кремния, электрокорунд (нормальный), кремний, гранит, стекло, кварц и пр. Для получения бархатной шкурки пользуются порошками окиси железа (крокусом). [c.192]

    В сером чугуне углерод содержится главным образом в виде пластинок графита. Эти малопрочные пластинчатые включения углерода пронизывают металлическую основу материала и служат центрами разрушения серого чугуна при растяжении. Это влияние графита гораздо меньше сказывается при сжатии чугуна. Поэтому прочность чугуна при сжатии примерно в четыре раза больше прочности при растяжении. Поэтому серый чугун применяют при изготовлении деталей, работающих на сжатие, или для ненагруженных деталей (станины станков, корпуса редукторов и насосов, поршневые кольца двигателей и др.). Серый чугун характеризуется высокими литейными свойствами низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка. Он служит основным материалом для литья. Кроме углерода, серый чугун всегда содержит другие элементы. Важнейшие из них — это кремний и марганец. В большинстве марок серого чугуна содержание углерода лежит в пределах 2,4—3,8%, кремния 1—4% и марганца до 1,4% (масс.). [c.630]

    Насадка представляет собой шарики размером от 5 до 12 мм, изготовленные из специальных материалов на основе окиси алюминия и окиси кремния. Материал насадки должен обладать термостойкостью, высокой плотностью, большим сопротивлением к износу и высокой теплоемкостью. [c.49]

    Новые стали и сплавы для печных труб. В основу разработки новых сталей и сплавов для печных труб высокотемпературных печей заложена сопротивляемость материала науглероживанию, которая зависит от соотношения никеля к хрому в марке сплава и наличия легирующих элементов ниобия, вольфрама, алюминия, титана, кремния и редкоземельных металлов. [c.38]

    Потребность в нефтяном коксе, как более дешевом и высококачественном материале, чем кокс, получаемый на основе угля (так называемый пековый), весьма значительна и непрерывно возрастает. Основной потребитель нефтяного кокса - алюминиевая промышленность кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Удельный расход кокса на производство алюминия весьма значителен и составляет 550-600 кг на 1 т алюминия. Из других областей применения нефтяного кокса следует назвать использование его в качестве сырья для изготовления графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. Специальные сорта нефтяного кокса применяют как конструкционный материал для изготовления химической аппаратуры, работающей в условиях агрессивных сред. [c.43]

    В результате поверхность материала защищена от воздействия воды неполярными группами органических заместителей у кремния, а материал теряет способность смачиваться водой и капиллярно ее всасывать. В то же время гидрофобные пленки на основе кремнийорганических соединений проницаемы для пара и воздуха, благодаря чему сохраняется важная способность материала дышать . [c.595]

    Материалы группы А. Изоляционные лаки, клеи и компаунды на основе феноло-формальдегидных, гли-фталевых и других конденсационных смол давно применяются в электротехнике. В последние годы важное значение в качестве электроизоляционных материалов имеют крем-ний-органические полимеры. Еще в 1935—1939 гг. К. А. Ан-, дриановым с сотрудниками были изучены и синтезированы основные типы кремний-органических полимеров. На основе этих соединений в настоящее время производятся электроизоляционные и жаропрочные лаки, этилсиликат, кремний-органические жидкости и смазки, силиконовый каучук, прессовые и слоистые пластики на основе кремний-органических полимеров. Кремний-органические материалы отличаются высокой теплостойкостью и низкой температурой замерзания. Их физико-химические показатели остаются почти неизменными в широком интервале температур (от минус 60° до плюс 200°). Выпускаемые в настоящее время кремний-органические пластические массы с асбестовыми стеклянными наполнителями обладают ценными свойствами и быстро внедряются в различных отраслях электротехники. Например, кремний-органический асбоволокнит К-41-5, обладающий высокой механической прочностью, является жаростойким электроизоляционным материалом. Из него изготавливаются корпуса и детали приборов, электроарматуры и оборудования, постоянно подвергающиеся в условиях эксплуатации действию температуры от 200 до 300°. Изделия из прессовочного материала К-71 обладают высокой дугостойкостью и устойчивы в условиях тропического климата. Прессовочный порошок КМК-9 является жаростойким электроизоляционным материалом для изготовления деталей электро- и радиотехнических приборов и оборудования. В электропромышленности используются также полиэфирные смолы, например, [c.154]


    В настоящее время для получения материалов на основе углерода и карбида кремния существует достаточно большое количество технологий, использующих различные методы образования и спекания карбида кремния. Имеющиеся технологии, как правило, приводят к получению определенного вида материала, состав и свойства которого могут изменяться весьма незначительно в рамках одной технологии. [c.25]

    Способностью создавать длинные цепочки обладает также кремний (31), однако эти цепочки имеют совершенно другой характер и не являются основой органических тканей. Кроме того, для мертвой материи характерна способность образования весьма больших однородных сплошных молекул в виде кристаллов, например кристаллов поваренной соли, углерода в виде плоской кристаллической решетки графита или еще более крепких кристаллов алмаза, в которых атомы углерода прочно связаны по всему объему, и т. п. [c.207]

    Перлит. Перлит представляет из себя минеральный материал на основе оксида кремния. Так, например, содержание [c.125]

    Материал прессовочный 176 (ТУ 84-827—79). Композиция на основе кремннй-органического связующего, стекловолокна и других добаиок. [c.248]

    Кристаллы карбида кремния выращивают при 2500° в графитовых тиглях при легировании азотом получается материал п-типа. р — п-Переход создается путем диффузии акцепторов (бор, алюминий) при 2200°. Разработаны также методы жидкофазной эпитаксии карбида кремния из растворов-расплавов в различных металлах (например, в кремнии) при температуре выше 1500°. Сложная и трудоемкая высокотемпературная технология получения кристаллов и р — п-переходов на карбиде кремния делает этот материал очень дорогим, по сравнению с соединениями А В . Однако карбид кремния отличается очень высокой химической и механической стойкостью, а светодиоды на его основе — отсутствием спада яркости в процессе эксплуатации в течение 25 ООО ч даже при 200—400° при плотности тока 20 А см [до с. 61 — 67]. [c.150]

    Прм Диоксид кремния - основа для получения кремния, производства обыкновенного и кварцевого стекла, а также необходимый компонент керамики и абразивных материалов. В виде песка диоксид кремния - давно известный строительный материал. Чистые прозрачные кристаллы кварца идут на изготовление линз и призм, пропускающих Уф - излучение. Для этих целей используется также кварцевое стекло. Пьезоэлектрические свойства кварца находят применение в приборах для генерации ультразвука. Бесцветные и различно окрашенные монокристаллы диоксида кремния -драгоценные камни. Из непрозрачного технического кварцевого стекла изготавливают крупногабаритную термо- и кислотостойкую химическую аппаратуру, муфели для электрических печей. Особо чистое прозрачное кварцевое стекло применяется для изготовления труб, аппаратов и емкостей для полупроводниковой техники и радиоэлектроники. Силикагель (частично обезвоженная студнеобразная кремниевая кислота) используется для адсорбционной очистки органических жидкостей - масел, жиров, бензина и керосина. Кроме того, он применяется для улавливания водяных паров и других летучих веществ. Крупнопористый силикагель - незаменимый носитель для многих катализаторов. [c.38]

    В качестве исходного материала для резисторов во всем диапазоне номиналов применяют керметы. Исходные вещества для осаж дения керметных пленок выпускают под маркой МЛТ (на основе ферросилиция) и РС-37-10. Они представляют собой металло-ди электрические композиции на основе псевдосплава кремния с хромом и нихромом, где кремний составляет до 50%. Для высокоомных пленок в испаряемый состав добавляют стекло (например С41-1)  [c.143]

    Совсем другие явлеиия наблюдаются тогда, когда полупроводниковый материал находится во внешнем электростатическом поле, положительный полюс которого расположен со стороны р-области полупроводника, а отрицательный — со стороны л-области. В зтом случае в цепи течет постоянный электрический ток. Электроны поступают в кристалл с правого электрода, затем проходят через зону проводимости -области, через область п—р-перехода попадают в валентную зону р-области и пере1мещаются здесь до границы кристалла за счет дырочной проводимости, пока не попадут в левый электрод. В противоположном направлении электрический ток течь ие может, так как при достаточно низком потенциале внешнего электрического поля электроны не могут преодолеть барьер в области п—р-перехода и, следовательно, не могут перемещаться слева направо. Такой кристалл работает как выпрямитель электрического тока, пропускающий только ток определенного направления. Его можно использовать для преобразования переменного тока в постоянный. В настоящее время выпрямители па основе кремния все больше вытесняют ламповые диоды. [c.84]

    Основой вещества активных углей служит углерод, содержание которого достигает величины порядка 96 %. Так, например, в гранулированном угле марки СКТ его содержится 87 %, а в дробленом угле марки КАД-йодном — даже 96,3 %. Неуглеродистую часть материала углей составляют окислы металлов и кремния, а также азот- и серосодержащие группы. Наименьшую зольность имеют угл1г из древесного сырья БАУ - 3,1 %, ОУ-Б - 0,7 %. Зола большей части углей состоит из двуокиси кремния. Характеристика некоторых активных углей [178] приведена в табл. 5.1. [c.102]

    Плотность жидких металлов играет большую роль в металлургии. Применительно к процессу силицирования графита плотность жидкого кремния в значительной степени определяет скорость его перемещения по капиллярам. Изменение плотности при затвердевании является причиной возникновения напряжений в структуре материала, образования усадочных раковин и пористости в крупных порах. Для ухменьшения этого эффекта целесообразно процесс силицирования осуществлять применением двойных и более сложных сплавов на основе кремния. [c.45]

    Для типичного катализатора из окиси кремния или для песка диаметр пузыря должен превшпать 500 мм, чтобы из нисходящего потока увлекались частицы размером до 80 мни. С другой стороны, при псевдоожижении песка водой пузыри размером 6—7 им могут увлекать частицы диаметром до 580 в км. Таким образом, в первом (воздух) случае пузыри абсолютно неизбежны, тогда как во втором (вода) они будут незаметны. Одаако при псевдоожижении водой свинцовой дроби диаметром около 3 мм возможно образование пузырей до 180 им, прежде чем будет достигнута скорость увлечения частиц, и такие пузыри будут легко различимы. Заметим, что эти данные находятся в хорошем соответствии с качественными наблюдениями, описанными во введении к данному разделу главы. Во всяком случае, можно еще раз убедиться, что режимы движения ожижающего агента, масс твердого материала и отдельных частиц легко определяются на основе известных фундаментальных законов гидродинамики. [c.33]

    Многие вещества с тетраэдрическими связями — полупроводники. Они представляют большой интерес как материал для выпрямителей переменного тока, усилителей, фотоэлементов, датчиков, термоэлектрических генераторов и др. Многие из них успешно конкурируют с полупроводниковыми германием и кремнием. На основе InSb работают приборы, сигнализирующие о появлении нагретого тела на большом расстоянии. Арсенид галлия GaAs более перспективен, чем Si, в солнечных батареях. [c.202]

    Кальций в сплаве с кремнием (силико-кальций) употребляется как активный раскислитель сплавов на основе железа, никеля, меди. Смеси порошка магния с окислителями употребляются для изготовления осветительных и зажигательных ракет. Оксид магния (MgO)— жженая магнезия — благодаря высокой температуре плавления ( 3000 °С) применяется как огнеупорный материал для футеровки печей, изготовления огнеупорных труб, тиглей, кирпичей. Является основой магнезиальных вяжущих веществ (воздушные вяжущие вещества). Специфика магнезиальных вяжущих веществ состоит в том, что они затворяются не водой, а концентрированными растворами солей магния (Mg l2, MgS04), [c.268]

    Отбор химических элементов — этого подвижного строительного материала эволюционирующих систем — выступает прежде всего как весьма красноречивый научный факт. Ныне известно 107 химических элементов. Есть основания полагать, что большинство из них попадает в те или иные живые организмы и так или иначе участвует в жизнедеятельности. Однако основу живых систе.ч составляют только шесть элементов, давно получивших наименование органогенов. Это углерод, водород, кислород, азот, фосфор и сера, общая массовая доля которых в организмах составляет 97,4 % За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем. Это натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их массовая доля в организмах равна примерно 1,6%. Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере составом питательной среды). Их доля в организмах составляет около 1 %. Участие всех остальных элементов в построении биосистем практически не зафиксировано. [c.194]

    Второй основной подраздел каждой главы посвящен описанию реакций, принадлежащих к категории, указанной в названии главы. В одной книге невозможно рассмотреть все или почти все известные реакции. Однако здесь предпринята попытка затронуть важнейшие реакции стандартной органической химии, которые можно использовать для получения относительно чистых соединений с приемлемыми выходами. Для объективности представленной картины и для того, чтобы не упустить реакции, традиционно обсуждаемые в учебниках, в книгу включены также реакции, не удовлетворяющие перечисленным требованиям. О широте охвата материала можно судить по тому факту, что более 90 % индивидуальных методик, приводимых в Organi Syntheses , нашли отражение в этой книге. Однако некоторые специальные области обсуждаются лишь поверхностно или вообще не рассматриваются. К их числу относятся электрохимические реакции и реакции полимеризации, способы получения и свойства гетероциклических соединений, углеводов, стероидов и соединений, содержащих фосфор, кремний, мышьяк, бор и ртуть. Основные принципы, на которых основаны эти разделы химии, конечно же, не отличаются от принципов, лежащих в основе более подробно разобранных разделов. Несмотря на эти упущения, в книге рассмотрено около 590 реакций. [c.6]

    Материалы, получаемые внутренним силицировапием наряду с их непосредственным использованием могут также служить основой под пропитку и уплотнение различными импрегнатами, такими, как, например, жидкий кремний, расплавы металлов и сплавов, пиролитически осаждаемые фазы и другие. Для случая жидкофазной пропитки кремнием, сформулированы требования к материалу, обеспечивающие получение беспористого материала на основе карбида кремния с незначительным содержанием посторонних фаз. [c.25]

    В США, Японии, ФРГ, Франции и других странах в качестве высокоэффективного и перспективного материала для электроизоляции кабелей применяют кремнийорганиче-скую резину, которая почти по всем показателям превосходит другие электроизоляционные материалы. Под воздействием огня она выделяет мало серы, галогенов, не создает опасности коррозии оборудования, имеет высокую степень огнестойкости и с введением в полимер фенила повышает сопротивление к радиации, а выделяемый при горении дым состоит в основном из паров воды и незначительного количества оксида углерода. Важной отличительной чертой кремнийорганической резины является то, что под воздействием огня и выгорания ряда ее составных частей остается диоксид кремния, обладающий высокими диэлектрическими свойствами. По мнению многих зарубежных специалистов, более высокая стоимость кабелей с изоляцией из кремнийорганической резины (в 1,5—2 раза) по сравнению с другими кабелями окупается ее высокой огнестойкостью и надежностью. Специалисты в нашей стране считают возможным создание огнезащищенных кабелей для АЭС на основе каучуков и специальных резин. На основе каучука СКТВ, [c.142]

    В идеальном случае подложка для образца должна быть хорошим проводником и быть сделана из материала, который не давал бы вклада в рентгеновский сигнал, идущий с образца. Для массивных образцов или срезов, изучаемых в режиме вторичных электронов, образцы обычно помещают на хорошо отполированные сверхчистые углеродные, алюминиевые или бе-риллиевые диски. Подходит также для этого легированный бором монокристаллический кремний. Эти материалы являются достаточно хорошими проводниками и дают только малый вклад в рентгеновский фон. Материалы, которые нужно исследовать с помощью световой оптики, должны монтироваться на кварцевых или прозрачных пластиковых пленках, которые для создания проводимости должны покрываться тончайшим слоем ( 5—7 нм) алюминия. Для материалов в виде среза пригоден целый ряд подложек, в основном на основе стандартной сетки (3,08 мм) для просвечивающего электронного микроскопа. Можно применять сетки, изготовленные из меди, титана, никеля, алюминия, бериллия, золота, углерода и нейлона. Они могут использоваться с пластиковой поддерживающей пленкой и без нее. Имеется тенденция использовать сетки, изготовленные из материалов с низким атомным номером, таких, как алюминий, углерод или бериллий, так как они дают значительно меньший вклад в рентгеновский фон. В качестве подложек для образца использовались нейлоновые пленки с алюминиевым или углеродным покрытием [300, 426], преимущество которых состоит в том, что они являются более прочными и прозрачными [c.285]

    Карбид кремния Si по твe здo ти уступает только алмазу, в связи с чем используется как абразивный материал, а также как полупроводниковый Широко применяется кварцевое стекло SiOj Кремний входит в состав многих сплавов железа и цветных металлов Германий используется в качестве полупроводникового материала На основе GeOj готовят специальные оптические стекла [c.228]

    Германатные связки Германий — аналог кремния и должен давать вязкие растворы солей щелочных металлов, аналогичные растворам силикатов щелочных металлов. Германаты калия более легкоплавки и должны лучще растворяться в воде. Кроме того, с увеличением радиуса катиона растет устойчивость комплексных соединений. Поэтому германатную связку получали на основе германатов с ОеО/К20 = 2. Для этого смесь ОеОг и КгО (2 1) спекали при 900—950°С, а затем спёк (аналог силикат-глыбы) измельчали и растворяли в автоклаве при 150°С и 0,59 МПа. Таким образом получали раствор плотностью 1,2 г/см с модулем 0е02/К20=1. Сочетание такой связки с кварцевым наполнителем давало материал с относительно низкими прочностями ( 6,0МПа). Введение в связку отвердителя, позволяющего образовываться нерастворимым кальциевым силикатам, повышало прочность материала до 15 МПа. [c.101]

    АФС, наполненные высокомодульными волокнами, превращают в композиционные материалы, способные работать до 1650°С. Если используют волокна из оксида кремния, получают радиопрозрачные материалы [158]. Алюмофосфатным связующим пропитывают изделия из углерода, что уменьшает их окисляемость (антифрикционные материалы), причем скорость окисления снижается на порядок. На основе АХФС готовят пенопластик, смешивая связку с фенольной смолой и вспенивателем—алюминиевой пудрой. Кроме того, вводят наполнитель (золы, глины), что повышает прочность, нагревостойкость, огнестойкость [159]. Фосфатофенопластик используют для тепловой защиты металлических покрытий (до 200 °С). Поропласты также готовят на основе АФС и корунда Si02 с органической массой (16—47 %) и вспенивателем. После получения материала при 180—190 °С его нагревают при 1100 °С до удаления органики. Получающийся пористый материал имеет плотность 1,2 г/см и прочность [c.140]

    Реакционное спекание имеет место, например, при обжиге керамики на основе карборунда 51С, нитрида кремния 8]зЫ4 и некоторых других бескислородных соединений. При получении некоторых изделий из карборунда массу, содержащую углерод, помещают в специальную засыпку, например, из элементарного кремния, который при высокой температуре возгоняется, а возникающие пары кремния взаимодействуют с углеродом, образуя 5 С — уплотняющий материал. При получении изделий из нитрида кремния обжиг масс, содержащих кремний, проводят в среде азота, взаимодействующего с кремнием при высокой температуре с образованием 51зН4. [c.345]


Смотреть страницы где упоминается термин Материалы на основе кремния: [c.383]    [c.247]    [c.213]    [c.282]    [c.24]    [c.12]    [c.229]    [c.130]    [c.214]    [c.130]    [c.130]   
Смотреть главы в:

Поверхностно-активные вещества -> Материалы на основе кремния




ПОИСК





Смотрите так же термины и статьи:

Материалы на основе материалы



© 2025 chem21.info Реклама на сайте