Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белков домены

    В дрожжах обнаружены генетические регуляторные эле.менты типа прокариотических репрессоров. Некоторые из них интенсивно изучаются, в частности репрессор гена GAL. Эгот белок состоит по крайней мере из двух функциональных доменов. Один [c.250]

    Антитело представляет собой белок со специфичным доменом, связывающим антигены. [c.565]

    Можно указать районы вторичной структуры 16S РНК, узнаваемые независимо связывающимися белками. Белок S8 узнает, связывает и защищает от нуклеаз длинную составную спираль 25—26 в домене II (см. рис. 42). Белок S15 занимает непосредственно соседнюю, по направлению к З -концу РНК, длинную составную спираль 28—29—30. Белок S4 узнает и связывает шпильку, включающую спирали 20 [c.100]


    Как было показано в предыдущем разделе, основной единицей является домен. Ассоциации таких доменов имеют второстепенное значение. В последующем изложении рассматривается, каким образом окружение, в котором находится белок, влияет на характер объединения доменов. [c.61]

    Олигомеры в отличие от мономеров могут диссоциировать. Белки обычно подразделяют на мономеры и олигомеры. Согласно определению Клотца и сотр. [81], белок представляет собой мономер , если он состоит только из одной полипептидной цепи или если он построен из нескольких цепей, связанных ковалентно (например, Дисульфидными мостиками). По этой номенклатуре такие белки, как инсулин, а-химотрипсин и иммуноглобулины, представляющие собой образования из валентно-связанных цепей, должны быть отнесены к мономерам. Отличительная особенность олигомерных белков состоит в том, что они построены из так называемых субъединиц, т. е. из связанных невалентными силами более мелких образований (рис. 4.1 и 5.18). Как указывалось выше, мономеры могут состоять из нескольких функциональных доменов пли из еще большего числа структурных доменов. Это относится и к субъединицам Олигомеров, хотя субъединица часто эквивалентна функциональному домену. [c.61]

    Типы связей между функциональными доменами (ковалентная, невалентная), так же как и их отсутствие, можно коррелировать с физиологической средой, в которой существует белок. Большинство внутриклеточных белков олигомерны, белки плазмы крови — крупные мономеры, состоящие из нескольких функциональных доменов, а белки, действующие вне организма, представляют собой небольшие мономеры. Попытаемся пояснить некоторые аспекты такого распределения. [c.63]

    Структурные домены, по-видимому, служат единицами свертывания белка. Корреляция между близкими по цепи остатками дает основание рассматривать домены как такие участки цепи, которые свертываются независимо друг от друга. Если это так, то структурные домены можно определить как единицы свертывания цепи, т. е. более конкретно, чем ранее. Строение химотрипсина в известной степени подтверждает такое определение [18]. Этот белок содержит 13 молекул воды между двумя доменами внутри молекулы (рис. 5.14, а). По-видимому, домены свертываются отдельно и молекулы воды задерживаются в процессе последующей ассоциации [c.106]

    ЛИ Транскрипции, например с ТАТА-связывающимся белком, который в свою очередь взаимодействует с РНК-полимеразой (рис. 111, а). Белки — активаторы транскрипции, обладают, по крайней мере, двумя дискретными доменами, один из которых предназначен для узнавания ДНК, а другой для осуществления белок-белковых взаимодействий, играющих очень большую роль в образовании активного транскрипционного комплекса. [c.198]


    Применение химерных белков В некоторых случаях конечным продуктом, который предполагается использовать, является сам химерный белок. Например, нередко возникает необходимость в получении антител, узнающих конкретный участок белковой молекулы. Чтобы рещить эту задачу, можно встроить в подходящий вектор сегмент ДНК, кодирующий белковый домен, к которому будут вырабатываться нужные антитела. Образующийся в результате химерный белок и будет служить антигеном. Антитела к стабилизирующему его белковому компоненту, происходящему от хозяйской клетки, можно удалить абсорбцией их на чистом стабилизирующем белке, и тогда останутся только антитела, связывающиеся с нужной аминокислотной последовательностью. [c.113]

Рис. 11.2. А. Молекула gD HSV-1 с трансмембранным доменом, погруженным в плазматическую мембрану. Б. Растворимый белок gD, не содержащий трансмембранного домена. Рис. 11.2. А. Молекула gD HSV-1 с трансмембранным доменом, погруженным в плазматическую мембрану. Б. <a href="/info/382047">Растворимый белок</a> gD, не содержащий трансмембранного домена.
    Тканевый фактор представляет собой интсфальный мембранный белок. Домен этого белка, экспонированный на наружной поверхности мембраны, представляет собой рецептор фактора VII. Тканевый фактор обнаруживается в плазматической мембране большинства клеток, в том числе эндотешальных и тромбоцитов. [c.320]

    Если белок содержит ряд структурно сходных повторяющихся доменов, то наблюдается строгое соответствие отдельных экзонов доменам или субдоменам белковой молекулы. Гены, относящиеся к так называемому сверхсемейству генов иммуноглобулинов , содержат разное число экзонов, кодирующих домены полипептидной цепи, каждый из которых включает около ПО а. о. Гомология между отдельными доменами этих белков, выполняющих разные функции в организме, наблюдается на уровне первичной, вторичной и третичной структуры. Гены этого семейства могут содержать один экзон (ген р2-микроглобулина), два или четыре (гены секретируемых антител В-клеток) и, наконец, пять экзонов (ген гликопротеина плазмы человека). р-Кристаллины мыши содержат четыре белковых домена, каждый из которых включает определенный структурный мотив полипептидной цепв , "щ х  [c.192]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    Рядом особенностей отличается кислый белок L7/L12. Уже указывалось, что в рибосоме он образует тетрамер. В растворе стабильной является его димерная форма. Димер белка L7/L12 —это жесткая вытянутая палочкообразная молекула с радиусом инерции около 4 нм (длина около 10 нм при молекулярной массе 25000 дальтон). В тетрамере они уложены, по-видимому, параллельно, формируя палочкообразный стержень 50S субчастицы (см. гл. Б.1). Мономерная субъединица белка L7/L12 оказалась построенной из двух доменов.—глобулярного С-концевого (около 70—80 аминокислотных остатков) и неглобулярного (вытянутого) N-концевого (приблизительно 40 амино-96 [c.96]

    S4 и S20 (а также S17, не показанный на рисунке) комплексируются в районе 5 -концевой трети 16S РНК (домен I), белки S8 и S15 взаимодействуют с серединой 16S РНК (домен II), а белок S7 имеет место посадки в районе З -концевой трети цепи этой РНК (домен III). [c.100]

    Из совокупности данных создается впечатление, что цепь мРНК ввязывается и проходит по 30S субчастице где-то между ее долями Йли между доменами ее РНК. Очень вероятно, что это район желобка, отделяющего головку от боковой лопасти и головку от тела. В этом протяженном районе находятся как З -конец 16S РНК, так и белки S3 и S5 (см. Б.ГУ.2 и 3 Б.У.З), а также, вероятно, черешок домена III 16S РНК и белок S1. Сшивки химически активных аналогов мРНК с. омпонентами 50S субчастицы указывают на близость к мРНК таких белков, как L1 и L7 L12, находящихся с двух разных сторон прямо напротив борозды, отделяющей головку от боковой лопасти и головку от тела 30S субчастицы, соответственно (см. раздел Б.1У.2 и рис. 67). [c.139]

    С-терминальный домен В, имеющий молекулярную массу около 39000 дальтон, обладает лектиноподобным действием он способен специфически связываться с поверхностным неидентифицированным рецептором животной клетки. Связывание белка с поверхностью клетки приводит к тому, что он, по непонятному пока механизму, внедряется в цитоплазматическую мембрану, и там происходит про-теолитическое расщепление междоменной пептидной связи и одновременное восстановление дисульфидной связи в результате белок распадается на фрагмент А и фрагмент В. N-терминальный фрагмент А, имеющий молекулярную массу 21150 дальтон, проваливается в цитоплазму. Именно этот фрагмент и является ингибитором белкового синтеза в клетке. Он оказался высокоспецифическим ферментом, осуществляющим АДФ-рибозилирование одного аминокислотного остатка в EF-2. После такого АДФ-рибозилирования нормальные функции EF-2 нарушаются. Ввиду каталитического характера действия фрагмента А достаточно одной молекулы токсина, чтобы модифицировать все молекулы EF-2 и убить клетку. [c.215]


    Некоторые другие бактериальные токсины. Экзотоксин А Pseudomonas aeruginosa обладает подобным же механизмом действия, что и дифтерийный токсин. Этот белок с молекулярной массой 71500 дальтон тоже взаимодействует с поверхностью эукариотической клетки своим лектиновым доменом, погружается в мембрану, там расщепляется на фрагменты А и В с молекулярными массами 27000 [c.216]

    Различия между ассоциацией структурных доменов одной цепи и ассоциацией глобулярных белков, т. е. разных цепей, весьма расплывчаты. Так, в роданезе (рис. 5.17, а) домены одной цепи при агрегировании образуют систему с высокой симметрией [257], как и субъединицы димерного белка. При образовании оболочек вируса полиомиелита [163] и вируса лесов семлики [258] большое число белковых глобул формируется из одной полипептидной цепи, а затем уже разделяется протеазой. После расщепления белок симметрично агрегируется с образованием оболочки вируса. Это показывает, что отдельные домеиы мультидоменного глобулярного [c.117]

    Контакты часто представлены -складчатыми листами. В кон-канавалине А один (I—IV) из трех тппов контактов также намного слабее, чем два других. Особенно прочен контакт I—II, включающий 14 водородных связей. В этом случае широкая (шестицепочечная) (3-структура пересекает ось второго порядка, так что образуется регулярная (3-структура из 12 цепей. Две цепи, связанные пересекающими ось второго порядка водородными связями, антипа-раллельны, таким образом, эта ось перпендикулярна плоскости листа. Подобные продолжения (3-структур на поверхности раздела белок — белок обычны для агрегатов субъединиц и структурных доменов. [c.122]

    Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]

    По своей химической природе рецепторы почти всех биологически активных веществ оказались гликопротеинами, причем узнающий домен (участок) рецептора направлен в сторону межклеточного пространства, в то время как участок, ответственный за сопряжение рецептора с эффекторной системой (с ферментом, в частности), находится внутри (в толще) плазматической мембраны. Общим свойством всех рецепторов является их высокая специфичность по отношению к одному определенному гормону (с константой сродства от 0,1 до 10 нМ). Известно также, что сопряжение рецептора с эффекторными системами осуществляется через так называемый С-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мемб- [c.289]

    Белковая цепь может иметь громадное число конформащ1Й. Нахождение уникальной конформации, отвечающей абсолютному минимуму свободной энергии, путем перебора всех возможных конформаций невозможно. Эта задача, по-видимому, обходится и природой, так как такой перебор потребовал бы очень большого времени, а самосборка белковой глобулы происходит за время порядка 1 с. Основная идея современных работ, посвященных предсказанию структуры глобулы, исходя из знания первичной структуры цепи, состоит в том, что нативная глобула есть конечный результат самосборки, не обязательно отвечающий абсолютному минимуму свободной энергии. При нахождении нативной глобулы надо исходить из определенной иерархии структур. Белок может быть разделен на спиральные или вытянутые структурные сегменты, соединенные разнообразными изгибами или петлями. Два или три соседних по цепи структурных сегмента образуют элементарные комплексы шпильки из антипараллельных а-спиралей, антипараллельные -шпильки и параллельные р-шпильки, прикрытые а-спиралью. Далее возникает домен, т. е. компактная структура, построенная из нескольких соседних элементарных комплексов и структурных сегментов. Глобулы малых белков состоят из одного домена, больших — из нескольких. Эта иерархия структур показана схематически на рис. 4.14. Таким образом, предполагается блочный механизм сворачивания белка — более простые структуры нижнего иерархического уровня служат блоками для формирования высших структур (Пти-цын). [c.109]

    Кажущаяся плотность белков в воде выше, чем их сухая плотность в органических растворителях. Это возрастание плотности вызывается электрострикцией связанной воды. Молекулы воды связываются на поверхности глобулы, а также внутри нее — между доменами химотрипс на, например, или между субъединицами белка, обладающего четвертичной структурой. Количество связанной воды, в которую не могут проникать электролиты, составляет около 0,3 г на 1 г белка, т. е. примерно 100 молекул НгО на белок с м. м. 6000. Непроникновение электролитов в свя-ванную воду определяется электростатическими эффектами. Рассмотрим заряд е, погруженный в растворитель с высокой диэлект- [c.116]

    Фермент, называемый активатором тканевого плазминогена (tPA), - это сериновая протеина-за, состоящая из нескольких доменов ее используют в клинике для растворения сгустков крови. К сожалению, tPA быстро выводится из системы кровообращения, поэтому его приходится вводить путем инфузии. Чтобы добиться желаемого терапевтического эффекта, необходимо использовать высокие концентрации фермента, а это может приводить к неспецифическому внутреннему кровотечению. Таким образом, было бы весьма желательно получить долгоживущий фермент tPA, обладающий высоким сродством к фибрину в тромбах и не вызывающий кровотечения. Белок с такими свойствами можно получить, внося специфические мутации в ген нативного tPA. Заменив Thr-103 на Asn, получили фермент, сохраняющийся в плазме кролика примерно в 10 раз дольше, чем нативный вариант. Заменив аминокислоты 296—299 с Lys-His-Arg-Arg на А1а-А1а-А1а-А1а, добились существенного повышения сродства фермента к фибрину. Заменив Asn-117 на Gin, получили фермент с такой же фибринолитиче-ской активностью, как у исходного фермента. Внеся эти три мутации в один белок, получили фермент, обладающий всеми тремя свойствами (табл. 8.6). Чтобы выяснить, можно ли использовать его вместо нативного tPA, нужно провести дополнительные исследования. [c.174]

    Молекула целлюлазы обычно состоит из трех доменов каталитического, шарнирного, часто обогащенного остатками пролина, серина и треонина, и связывающего целлюлозу. Каталитический и связывающий домены функционируют независимо друг от друга. Такое разделение функций можно использовать, включив нуклеотидную последовательность связывающего целлюлозу домена в состав химерного гена, другая часть которого кодирует представляющий коммерческий интерес белок. Чтобы очистить полученный белок, его экстракт пропускают через колонку, набитую целлюлозой. С целлюлозой связывается только гибридный белок его элюируют и удаляют целлюлозный домен протео-лизом. Эта система сходна с иммуноаффинной хроматографией, но обходится дешевле. [c.300]

    После идентификации токсинового гена В. thuringiensis бьша определена первичная структура кодируемого им белка. Сравнение аминокислотных последовательностей разных белковых токсинов показало, что белки некоторых штаммов имеют одинаковый домен, ответственный за токсичность. Кроме того, был субклонирован сегмент полной кодирующей последовательности, с которого синтезировался укороченный белок, в полной мере сохранивший свою токсичность. Таким образом, при последующих генноинженерных манипуляциях могут использоваться интактный ген токсина, его фрагмент или химически синтезированный олигонуклеотид. [c.336]

    Иммунотоксин (Immunotoxin) Химерный белок, состоящий из двух доменов, один из которых обладает свойствами антитела, а другой - токсина. Первый домен [c.549]


Смотреть страницы где упоминается термин Белков домены: [c.198]    [c.217]    [c.254]    [c.263]    [c.565]    [c.132]    [c.161]    [c.63]    [c.119]    [c.223]    [c.217]    [c.223]    [c.232]    [c.262]    [c.339]    [c.345]    [c.63]   
Генетика человека Т.3 (1990) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Домены



© 2025 chem21.info Реклама на сайте