Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза переносчики через ГЭБ

Рис. 14-2. Схема эпителиальной клетки из тонкой кишки показано, как плотные контакты разграничивают области плазматической мембраны, в которых могут находиться различные транспортные белки. Такое разграничение обеспечивает перенос питательных веществ из просвета кишки через эпителиальный слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозпими насосами апикальной поверхности, а затем выходит из клетки путем облегченной диффузии при участии белков - пассивных переносчиков глюкозы, находящихся в базолатеральной области мембраны Плотные соединения, по-видимому, ограничивают перемещение белков определенными участками плазматической мембраны, действуя как диффузионные барьеры внутри ее липидного бислоя эти соединения блокируют также диффузию липидных молекул в наружном (но не во внутренном) листке липидного бислоя. Рис. 14-2. Схема <a href="/info/105949">эпителиальной клетки</a> из тонкой кишки показано, как <a href="/info/100512">плотные контакты</a> разграничивают области <a href="/info/101065">плазматической мембраны</a>, в которых могут находиться <a href="/info/1821159">различные транспортные</a> белки. Такое разграничение обеспечивает перенос <a href="/info/103029">питательных веществ</a> из просвета кишки <a href="/info/1890400">через эпителиальный</a> слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозпими насосами <a href="/info/1389839">апикальной поверхности</a>, а затем выходит из <a href="/info/1345802">клетки путем</a> облегченной диффузии при <a href="/info/143979">участии белков</a> - <a href="/info/1390047">пассивных переносчиков</a> глюкозы, находящихся в базолатеральной <a href="/info/1632401">области мембраны</a> <a href="/info/722713">Плотные соединения</a>, по-видимому, ограничивают <a href="/info/1339145">перемещение белков</a> определенными участками <a href="/info/101065">плазматической мембраны</a>, действуя как <a href="/info/71885">диффузионные барьеры</a> внутри ее <a href="/info/179541">липидного бислоя</a> эти соединения блокируют <a href="/info/135599">также диффузию</a> <a href="/info/1386865">липидных молекул</a> в наружном (но не во внутренном) листке липидного бислоя.

    Всасывание образовавшихся моносахаридов (глюкозы, фруктозы) стенками тонкого кишечника и поступление их в кровь происходит путем активного транспорта с участием белка-переносчика, градиента Ыа" и АТФ (см. главу 5). Ионы Ма" активируют АТФ-азу, которая ускоряет распад АТФ и освобождение энергии, необходимой для проникновения этих моносахаридов через стенки кишечника. Всасывание других моносахаридов осуществляется посредством пассивной диффузии, так как их содержание в крови низкое. Скорость всасывания отдельных моносахаридов неодинакова. [c.165]

    Повышение уровня инсулина увеличивает поступление глюкозы в мышцы и жировую ткань за счет ускорения транспорта глюкозы через клеточные мембраны путем перемещения белков-переносчиков в плазматическую мембрану. Кроме того, инсулин стимулирует синтез гликогена в мышцах. Таким образом, поглощение глюкозы печенью, мышцами и жировой тканью приводит к восстановлению нормальной концентрации глюкозы приблизительно через 2 ч после приема пищи. [c.384]

    Щеточная каемка энтероцитов содержит системы переносчиков, многие из которых сходны с переносчиками, присутствующими в мембранах щеточной каемки почек и специализированными в отношении захвата разных аминокислот и сахаров. Постулировано существование переносчика, способного связывать различными своими участками глюкозу и Na+ и переносить их через плазматическую мембрану кишечной клетки. Можно себе представить, что глюкоза и Na+ высвобождаются затем в цитозоль, позволяя переносчику захватить новую порцию груза . Na+ транспортируется по градиенту концентрации, стимулируя переносчик к транспорту глюкозы против указанного градиента. Свободная энергия, необходимая для этого активного транспорта, образуе- [c.294]

    Глюкоза выходит из клетки путем облегченной диффузии через белок-переносчик (см. рис. 5.17). [c.26]

    ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА, Через плаценту от матери плоду передаются глюкоза, аминокислоты, липиды, неорганические соли и витамины. Глюкоза передается в результате облегченной диффузии с помощью специальных белков-переносчиков, описанных в разд. 5.9.8, а такие ионы, как натрий, калий и кальций — главным образом путем активного транспорта, хотя не исключено, что в случае ионов частично имеет место диффузия. Аминокислоты, железо и витамины проникают через плаценту с помощью активного транспорта. Важность соблюдения диеты во время беременности рассматривается в гл. 8. [c.93]


    Различают два вида диффузии веществ через клеточные мембраны — пасочную (без переносчика) и облегченную (с участием вещества- переносчика). При пассивной диффузии происходит произвольное движение веществ через поры (отверстия) в мембранах клеток или через липиды мембран. Через поры диффундируют многие продукты обмена (НдО, СО2, МНз и др ) также кислород. Поры имеются не только в плазматических мембранах клетки, но и в ядерных мембранах (рис. 28). Через эти поры внутрь ядра проходят белки, из которых образуются рибосомы, а также нуклеотиды, из которых синтезируются нуклеиновые кислоты. Из ядра в цитозоль клетки выходят рибосомы и отдельные виды нуклеиновых кислот. Жиры и жирорастворимые вещества, например витамины, проникают через клеточные мембраны благодаря их растворению в липидном слое этих мембран. При облегченной диффузии движение вещества через мембрану обеспечивается веществом-пере-носчиком. Переносчик либо вращается в мембране, либо образует канал только для определенного вещества, что создает возможность его диффузии по градиенту концентрации. Так транспортируются небольшие молекулы веществ, например ионы металлов и глюкоза, через клеточную мембрану в цитозоль. [c.75]

    Полисахариды и дисахариды практически не всасываются. Они подвергаются в кишечнике расщеплению на более простые формы — легко всасывающиеся моносахариды. Глюкоза и другие гексозы, а также пентозы легко всасываются через слизистую двенадцатиперстной и подвздошной кишки в капилляры кровеносной системы, которые впадают в воротную вену печени. Манноза и пентозы поступают в клетку путем диффузии, а галактоза, фруктоза и глюкоза транспортируются через слизистую путем облегченной диффузии (опосредованного переносчиком транспорта). Переносчиком является Ыа . [c.84]

    Фотосинтетическая деятельность клеток мезофилла обогащает ткани листа сахарами и другими продуктами фотосинтеза. В результате возрастает функциональная активность проводящих пучков. Теоретически существуют два способа транспорта ассимилятов к проводящим пучкам по симпласту (через плазмодесмы и цитоплазму последовательного ряда клеток) и по апопласту (по клеточным стенкам). Однако у многих видов растений между клетками мезофилла и флоэмы плазмодесмы развиты крайне слабо или совсем отсутствуют. В апопласте листовой пластинки может находиться около 1/5 сахаров, содержащихся в листе, и значительная доля свободных аминокислот. Клетки листовой паренхимы сравнительно легко выделяют ассимиляты в наружную среду и относительно слабо их поглощают. Клетки флоэмных окончаний, напротив, способны усиленно поглощать из внешних растворов сахара и аминокислоты против концентрационного градиента с помощью энергозависимых переносчиков. Есть основание считать, что, выходя из паренхимных клеток листа в клеточные стенки, сахароза расщепляется находящейся там инвертаз ой на гексозы (фруктозу и глюкозу), которые в проводящих ч ах в овь образуют сахарозу. [c.104]

    При всасывании из кишечника в кровь моносахариды проникают через клеточные мембраны путем облегченной диффузии, с участием специальных переносчиков. Кроме того, для переноса глюкозы и галактозы существует еще и другой способ — активный транспорт по механизму симпорта за счет градиента концентрации ионов натрия, который создается Ка,К-АТФазой (см. рис. 7.16). Этот [c.250]

Рис. 12-24. Схема эпителиальной клетки из тонкой кишки показано, как плотные контакты разграничивают области, в которых могут находиться разные транспортные белки. Такое разграничение обеспечивает перенос питательных вешеств из просвета кишки через эпителиальный слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозными насосами апикальной поверхности, а затем диффундирует из клетки при участии белков пассивных переносчиков глюкозы, расположенных в базолатеральной области плазматической мембраны. Рис. 12-24. Схема <a href="/info/105949">эпителиальной клетки</a> из тонкой кишки показано, как <a href="/info/100512">плотные контакты</a> разграничивают области, в которых могут находиться разные <a href="/info/150412">транспортные белки</a>. Такое разграничение обеспечивает перенос питательных вешеств из просвета кишки <a href="/info/1890400">через эпителиальный</a> слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку <a href="/info/509316">глюкозными насосами</a> <a href="/info/1389839">апикальной поверхности</a>, а затем диффундирует из клетки при <a href="/info/143979">участии белков</a> <a href="/info/1390047">пассивных переносчиков</a> глюкозы, расположенных в базолатеральной области плазматической мембраны.
    Понятно, что лучше всего распознавание жизнеспособной ткани обеспечивается сопоставлением уровня её обменных процессов и кровоснабжения. Известно, что при отсутствии или малом количестве доставляемого кислорода выживание клеток миокарда осуществляется посредством анаэробного гликолиза (Сакс В.А. с соавт. — 1992). Для доказательства существования в миокарде (или других тканях) гликолитического метаболизма используют аналог глюкозы — 2-фтор-2-дезоксиглюкозу (FDG), меченую а для исследования состояния окислительного метаболизма — С-ацетат или -пaльмитaт (Marshall R. . et al. — 1983). F-FDG транспортируется в клетки посредством её специфического переносчика через клеточную мембрану и фосфо-рилируется гексокиназой. В отличие от естественной глюкозы F-FDG здесь захватывается и далее не метаболизируется. [c.426]


    Вследствие его горького вкуса и источника получения (по аналогии с хинином) более ста лет назад им пытались лечить малярию. Позже было выяснено, что флоридзин вызывает у животных выделение с мочой большого количества глюкозы это явление было названо флоридзиновым диабетом . Сейчас флоридзин используется только в экспериментальной физиологии для изучения метаболизма и транспорта глюкозы через клеточные мембраны. Флоридзин вызывает глюкозурию, препятствуя реабсорбции глюкозы в почках и задерживая ее абсорбцию из тонких кишок. Флоридзин противодействует повышению абсорбции глюкозы мьшлечными клетками, вызываемому инсулином. Эти эффекты можно объяснить, предположив, что флоридзин конкурирует с моле-кулами-переносчиками в клеточных мембранах, принимающими участие в транспорте глюкозы. Флоридзин высокоспецифичен в этом процессе, поскольку близкий ему по строению галактозид относительно неактивен. Биологические свойства флоридзина подробно описаны Лотшпайном [70]. [c.369]

    Цитохромы — это переносчики электронов в процессе окислительного фосфорилирования, суть которого состоит в образовании АТР при переносе электронов от NADH или FADH2 к молекулярному кислороду. Весь процесс включает окисление субстрата (например, глюкозы). При этом поток электронов проходит через компоненты дыхательной цепи (цитохромы) к молекулярному кислороду, который в конечном счете восстапавливастся до воды. [c.413]

    Манноза и пентозы проникают через эпителий кишечника только путем облегченной диффузии с участием специальных переносчиков. Галактоза и глюкоза кроме этого пути могут транспортироваться против градиента их концентрации по механизму вторичного активного транспорта (Ка -зависимый симпорт). Поступление глюкозы из крови в клетки осуществляется в направлении падения ее градиента, так как в цитозоле большинства животных клеток концентрация свободной глюкозы очень низка, тогда как концентрация в плазме крови близка к 5 ммоль/л. Однако только в клетки печени и мозга транспорт глюкозы может осуществляться по механизму пассивной диффузии, и скорость поступления регулируется ее концентрацией в крови. Во всех других тканях скорость транспорта глюкозы осуществляется по механизму облегченной диффузии, который стимулируется инсулином. Активирующее действие инсулина на транспорт глюкозы через клеточную мембрану приведено в гл. 13. [c.241]

    Большая часть общей свободной энергии окисления освобождается по мере того, как водород переносится к кислороду через реакции дыхательной цепи. Например, при полном окислении глюкозы до углекислого газа и воды изменение свободной энергии составляет —688 ккал. Окисление 1 молекулы глюкозы по пути ЭМП и в цикле Кребса сопровождается образованием 10 молекул восстановленного НАД и 2 молекул восстановленного флавопротеида. Последующее окисление этих восстановленных переносчиков в дыхательной цепи приводит к общему изменению свободной энергии, равному —620,1 ккал [окисление НАД-Нг, Ю- (—53,75) ккал Ч-4- окисление восстановленного флавопротеида, 2-(—41,3) ккал]. Таким образом, при окислении глюкозы 90% [ (620,1/688)-100% ] общего изменения свободной энергии происходит в реакциях дыхательной цепи. Если допустить, что отношение Р/О для окисления восстановленного НАД и восстановленного флавопротеида составляет соответственно 3 и 2, то высоко экзергоиические реакции дыхательной цепи должны быть сопряжены с синтезом АТФ с эффективностью приблизительно 44% [ (3-8-10 + 2-8-2)/(620,1) 100% ]. [c.243]

    Система активного переноса и транспорта через биологические мембраны чрезвычайно сложна. Рабочим телом здесь служат специальные белки, а источником энергии является аденозинтрифосфор-ная кислота (АТФ). При активном переносе первым этапом поглощения является взаимодействие поглощаемых веществ с молекулами поверхностных структур протоплазмы. Адсорбированные молекулы переносятся затем в цитоплазму посредством механизма активного переноса. Предполагается, что в этих процессах ведущая роль принадлежит специальным транспортным системам — мембранным переносчикам, природа которых еще недостаточно изучена. Одним из звеньев такой системы могут быть мембранные транспортные АТФ-азы, активируемые ионами магния, калия и натрия. Так, в последнее время из мембран некоторых микроорганизмов выделены белки, участвующие в транспорте аминокислот. Обнаружены и изучаются белковые системы, ответственные за перенос сахаров в частности глюкозы. [c.15]

    Природные (Ь-) изомеры (но не О-изомеры) аминокислот подвергаются активному переносу через кишечную стенку от слизистой ее поверхности к серозной в этом переносе может участвовать витамин В (пиридоксальфосфат). Активный транспорт Ь-аминокислот представляет собой энергозависимый процесс об этом свидетельствует его ингибирование разобщителем окислительного фосфорилирования 2,4-динитрофенолом. Аминокислоты переносятся через щеточную каемку целым рядом переносчиков, многие из которых действуют при посредстве Na+-зависимых механизмов, подобно системе переноса глюкозы (рис. 53.4). К числу Na+-зaви имыx переносчиков относятся переносчик нейтральных аминокислот, переносчик фенилаланина и метионина и переносчик, специфичный для иминокислот, таких, как пролин и гидроксипролин. Охарактеризованы и независимые от Ка переносчики, специализированные в отношении транспорта нейтральных и ли-пофильных аминокислот (например, фенилаланина и лейцина) или катионных аминокислот (например, лизина). [c.296]

    Цитохалазин В-антибиотик, который часто используют как ингибитор клеточной подвижности, обеспечиваемой актином,-служит также мошным конкурентным ингибитором поглощения О-глюко-зы клетками млекопитающих. Когда тени эритроцитов инкубируют с цитохалазином В, меченным Н, а затем облучают ультрафиолетовым светом, происходит связывание цитохалазина с переносчиком глюкозы за счет поперечных сшивок. Если в среде имеется избыток О-глюкозы, то меченый цитохалазин не взаимодействует с переносчиком. Однако избыток в среде Ь-глюкозы (которая не переносится через мембрану) не влияет на связывание. Если мембранные белки из меченых теней разделить при помощи гель-электрофореза в полиакриламидном геле с ДСН, то переносчик выявляется в виде размытой радиоактивной полосы в диапазоне молекулярных масс от 45000 до 70000 Да. Если меченые тени до проведения электрофореза обработать ферментом, отщепляющим связанные сахара, то эта размытая полоса исчезает и вместо [c.56]

    В нервной ткани большая часть образующейся энергии окислительного метаболизма тратится на функцию, сопряженную с транспортом катионов против электрохимического градиента. Формирование нервного импульса обеспечивается Na" "—К -АТФазой, которая является пейс-мекером 40—50% клеточного дыхания в нейронах и периферических нервах [286, 289, 394, 469, 516, 607]. Стимулируемое высокими концентрациями калия дыхание срезов мозга (как и в других тканях) является отражением активации Na" —К+-АТФазы [108, 121, 204, 404, 453, 565, 607]. Энергозависимость этого процесса подтверждается подавлением его ингибиторами дыхательной цепи митохондрий [286,289]. Активация работы цепи калием сопровождается соответствуюхцими редокс-изменениями дыхательных переносчиков (рис. 16). При этом регистрируются двухфазные изменения (окисление= восстановление) как для пиридиннуклеотидов и флавинов, так и для цитохромов [49]. Эффект зависит от субстратов окисления и оптимально воспроизводится в присутствии глюкозы и пирува-та, что подтверждает его связь с аэробным гликолизом [49, 121, 122]. Стимуляция дыхания калием значительно сильнее вЫражена не на свежеизолированных срезах, а в более поздний временной период (например, через 60 мин) за счет появления нечувствительной к уабаину компоненты (см. рис. 16). [c.70]


Смотреть страницы где упоминается термин Глюкоза переносчики через ГЭБ: [c.87]    [c.341]    [c.714]    [c.104]    [c.436]    [c.318]    [c.392]    [c.49]    [c.223]    [c.241]    [c.318]    [c.392]    [c.475]    [c.281]   
Нейрохимия (1996) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Переносчик



© 2025 chem21.info Реклама на сайте