Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакций (включая реакции окисления)

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    В работе [80] они предложили более развернутую схему из 19 элементарных реакций. Значения предэкспоненциального множителя ко и энергии активации для этих реакций приведены в табл. 2.2. Кинетическая модель включает константы Е и к , заимствованные из экспериментальных работ по физике поверхностей, в том числе из измерений кинетики диссоциации СН4 и окисления СО. [c.48]

    Электродными процессами называются протекающие на границе раздела электрод — электролит процессы превращения окисленной формы в восстановленную или восстановленной формы в окисленную. Электродные процессы, как и химические реакции, включают несколько стадий. Природа, последовательность и условия протекания этих стадий определяют кинетику электродного процесса, т. е. вид зависимости скорости электродного процесса от таких параметров, как состав раствора, потенциал и материал электрода, температура и гидродинамические условия. [c.100]

    Из сказанного следует, что окисление некоторых ароматических углеводородов включает одноэлектронные стадии, приводящие к дикатионам. В этой связи интересны результаты, полученные Сио-дой [16] для 9,10-дифенилантрацена. Известно, что это соединение дает катион-радикал при обратимом одноэлектронном окислении, а при более положительных потенциалах отдает второй электрон, образуя дикатион. При электролизе в ацетонитриле и последующей реакции первичного продукта с водой образуется гранс-9,10-ди-окси-9,10-дифенилантрацен (VI), независимо от того, соответствовал ли потенциал одно- или двухэлектронной реакции. На основании изучения кинетики реакции катион-радикала (VII) с водой была предложена следующая схема реакции  [c.126]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]


    Электрокристаллизация включает процессы катодного или анодного электроосаждения в свою очередь последний процесс включает анодное образование окислов, гидроокисей и солей металлов на самом электроде, а также фазовые изменения, происходящие в анодных осадках, когда электронный переход приводит к окислению катионов. Феноменологически к этим процессам относятся осаждение металла, электрохимия первичных и вторичных электродов химических источников тока, за исключением газовых электродов, и основные процессы коррозии. При изучении кинетики этих процессов возникают разного рода проблемы, которые отличаются от проблем, изложенных в остальных разделах данной главы, поскольку невозможно рассматривать гетерогенную электродную реакцию как реакцию, скорость которой одинакова по всей поверхности электрода и к которой применим общий подход, развитый в разд. П. [c.303]

    В настоящий раздел включены две работы по кинетике реакций окисления иод-ионов. В первой работе окислителем является пероксид водорода, во второй — персульфат-ионы. Кинетику реакций исследуют методом внутреннего титрования путем химического анализа образующегося иода. Пробы не отбирают. [c.780]

    Изучение зависимости скорости реакции окисления от концентрации спиртов и кислот, проведенное советскими химиками [131— 133], выявило влияние межмолекулярных водородных связей на кинетику процесса. Распад гидроперекиси в присутствии этих соединений включает промежуточное образование комплексов [c.236]

    Рис. 16 иллюстрирует возможность описания кинетики реакции окисления железа при помощи уравнения (3.16). Как видно из рисунка, соответствующая линейная зависимость соблюдается весьма удовлетворительно, что естественно, так как она включает логарифмическую функцию. [c.115]

    К существенным теоретическим выводам этой главы относятся закономерности кинетики протекания химической реакции первого порядка, когда растворенные молекулы диффундируют от межфазной границы в жидкую фазу, и реакции второго порядка при взаимодействии растворенных молекул газа с нелетучим реагентом, который находится в жидкой фазе и диффундирует к границе раздела, где встречается с поступающими молекулами газа. Показано, что в этих двух случаях влияние реакции может быть совершенно различным и что скорость массопередачи может быть не пропорциональна движущей силе, особенно при протекании бимолекулярной реакции. Рассмотрены примеры применения теории, включая определение скоростей абсорбции оксидов азота в воде и в растворах кислот, анализ абсорбции диоксида углерода щелочными буферными системами, а также процесса окисления сульфита железа в водном растворе. [c.332]

    Кинетика нескольких реакций окисления ионами кобальта (III) изучена Боуном с сотрудниками [5]. Оказалось, что реакции включают прямую атаку на л-связь, однако изучение касалось лишь немногих продуктов реакции. Некомплексные ионы марганца (IV) могут вести себя подобным же образом, но другие окислители этого типа, описанные в гл. 4—7, так инертны к олефинам, что радикальная полимеризация последних может быть использована для демонстрации присутствия переходных радикалов при окислении других субстратов. [c.134]

    Таким образом, скорость окисления здесь не зависит от концентрации окислителя, т. е. имеет нулевой порядок по [Fe( H)a] и 1-ый порядок по тиоацетамиду и ОН -ионам. Однако при низких концентрациях окислителя стадия (2) — лимитирующая и тогда, для расчета скорости реакции следует использовать уравнение (7). Лимитирующая стадия (2) включает взаимодействие двух отрицательно заряженных ионов, поэтому в соответствии с уравнением (XIV,33) скорость этой реакции возрастает с увеличением ионной силы раствора (в частности, при введении 1<С1 в реакционную смесь), а также при увеличении диэлектрической постоянной среды (XIV,36). Поскольку скорости окисления тиомочевины и тиоацетамида очень чувствительны к концентрации щелочи, кинетику этих реакций изучают при постоянном значении pH и реакцию проводят в присутствии карбонат-бикарбо-натной буферной смеси , которая поддерживает pH 11. [c.389]

    Реакция включает окисление анизола при диссоциации первоначального комплекса. Для наблюдения кинетики псевдопервого порядка необходимы низкие концентрации, что не позволяет обнаружить продукты, получающиеся из анизола. [c.105]

    Кинетика окисления газообразных углеводородов сходна с кинетикой окисления водорода в том смысле, что также включает разветвленные цепные реакции, но она значительно сложнее. Для замедления слишком энергичного развития цепей (приводящего к детонации в двигателях внутреннего сгорания) в бензин вводят тетраэтилсвинец, который быстро реагирует с атомами и радикалами, что вызывает обрыв цепей. [c.313]


    Еще более важно установление в новых работах того факта, что изменениям энергии активации сопутствуют существенные изменения частотного фактора. Например, если энергия активации при высоких температурах, как показали Драй и Стоун (рис. 9), увеличивается с 11,5 ккал/моль (для 2,8% лития) до 17,6 ккал/моль (для 5% хрома), то частотный фактор монотонно при этом возрастает в хорощем соответствии с тета-правилом. Взаимная компенсация этих двух факторов такова, что при 350° катализатор с 2,8% лития только примерно в 5 раз активнее катализатора с 5% хрома. Эти результаты сходны с полученными Вагнером, исследовавщим влияние добавки галлия на каталитическую активность окиси цинка при разложении КгО [69, 71]. Здесь возникает следующий парадокс. Если предположить, что происходящее при снижении уровня Ферми увеличение скорости реакции обусловлено определяющей скорость окисления СО донорной реакцией, например СО == СО + е или С0 - 20 "= = СОз +е, то становится непонятным, почему же изменение, которое приводит к повыщению концентрации дырок на несколько порядков, способствует уменьшению частотного фактора. Винтер [97] на основании изучения кислородного обмена предположил, что при высоких концентрациях дырок реакция начинает осуществляться на немногих очень реакционноспособных кислородных центрах. Предположение об активных центрах позволяет обойти это затруднение. Можно было бы допустить, что один партнер (кислород) влияет преимущественно на ко, и попытаться определить влияние другого партнера (СО) на Е. Развивая эту идею, следует помнить, что кинетика реакции обнаруживает первый порядок по окиси углерода и нулевой порядок по кислороду. Если лимитирующей скорость стадией является реакция между адсорбированной СО и адсорбированным кислородом или кислородом решетки, то значения кажущейся энергии активации, представленные на рис. 9, включают теплоту адсорбции СО, и возможно, что изменение энергии активации отражает изменение теплоты адсорбции. В этом случае переход от добавки 5% хрома к 2,8% лития будет сопровождаться увеличением теплоты адсорбции СО примерно на 6 ккал/моль. В случае донорной реакции теплота адсорбции должна увеличиваться по мере снижения уровня Ферми [65], и Парравано [89] действительно наблюдал при 400° рост примерно на 7 ккал/моль, когда уровень Ферми был снижен в результате добавки лития. Для хемосорбции кислорода следует ожидать обратных эффектов, и Чимино, Молинари и Ромео [98] объяснили [c.350]

    Кинетика жидкофазного окисления углеводородов. Процесс окисления углеводородов включает большое число стадий, осложнен реакциями различных продуктов, образующихся в ходе окисления, специфичных для каждого углеводорода. Поэтому для понимания общих закономерностей этого процесса удобнее рассмотреть его кинетику с некоторыми упрощениями. [c.53]

    Рассмотрим кинетику накопления гидроперекиси в начальный период окисления при достаточно большой концентрации растворенного кислорода, когда [НОа] [Й1 и длинных цепях (V 10). Расходованием гидроперекиси в начальный период можно пренебречь. Пусть механизм окисления включает в себя элементарные реакции (0), (1), (2), (3), (6) (см. гл. 1, 3). [c.120]

    Явление катализа процессов окисления органических веществ добавками соединений металлов переменной валентности представляет собой важный раздел химической кинетики. Механизм этого катализа включает элементарные стадии, характерные для ионных и радикальных реакций. Таким образом, катализ соединениями металлов переменной валентности — область, пограничная между двумя важнейшими типами химических превращений,— реакциями, идущими с участием ионов, и свободно- [c.203]

    Окисление метана в формальдегид исследовалось на различных кислотных катализаторах, включая силикагель [396], в том числе с добавками оксидов щелочных и щелочноземельных металлов [397], алюмосиликаты [398—400], обработанные также различными кислотами [401], фосфаты металлов [401,402]. Механизм реакции окисления метана на кислотных катализаторах включает образование радикалов НОг и КОг [396]. При этом кинетика процесса соответствует параллельной схеме образования продуктов мягкого и глубокого ок 1сления [402]. Установлено, что избирательность по формальдегиду возрастает с увеличением прочности связи кислорода с пове йшостью катализатора [402]. [c.129]

    Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода (+1,23 в при ЙН+ = 1), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала большинство металлов становится термодинамически неустойчивыми, и вместо реакции выделения кислорода идет процесс их анодного растворения. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых положительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными окислами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аон- = 1 он составляет около +0,41 в), в качестве анодов применяют также металлы железной группы, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной и поэтому кислород выделяется обычно не на самом металле, а на его окислах. [c.383]

    Уравнение (3.41) описывает сдвиг равновесного потенциала электродной реакции, обусловленный изменением копцентраций окисленной и восстановленной форм у поверхности электрода. Оно не включает параметров электрохимической кинетики, так как при рассматриваемых чисто диффузионных ограничениях равновесие электрохимической стадии не нарушается. [c.115]

    Синтез цистинсодержащих пептидов окислением соответствующих производных цистеина. При аутоокислении пептидов, содержащих свободные меркаптогруппы, образуются исключительно дисульфиды. Эта реакция протекает очень медленно, но существенно катализируется ионами тяжелых металлов. Поскольку в условиях обычной экспериментальной работы практически невозможно полностью избавиться от ионов тяжелых металлов, то контакта с кислородом воздуха уже достаточно, чтобы цистеинсодержащие пептиды со свободной меркаптогруппой частично превратились в производные цистина в ходе таких операций, как упаривание, перекристаллизация, хроматография на колонках и т. д. [2192]. Иногда такое аутоокисление кислородом воздуха используют для синтеза бис-пептидов цистина [558, 729, 2192, 2322]. В большинстве случаев для ускорения процесса окисления через раствор цистеинсодержащего пептида пропускают ток воздуха [73, 940, 1539]. Иногда в качестве окислителя используют перекись водорода [856, 938]. Часто процесс проводят в присутствии катализаторов хлорного железа [73, 2579], сульфата железа(III) [940], окиси железа [858, 859] или сульфата меди(II) [938]. Изучение механизма окисления меркаптанов явилось предметом многих исследований, которые, однако, большей частью проводились не на цистеине, а на других меркаптанах. Детальный анализ этих работ дан в обзоре Сесиля и Мак-Фи [473]. Ламфром и Нильсен [1320] на основании изучения кинетики катализируемого металлами аутоокисления высказали предположение, что механизм этой реакции включает образование комплексов меркаптанов с металлами, а также тиольных радикалов. С другой стороны, был предложен ионный механизм реакции химического окисления меркаптанов, также протекающий через промежуточное образование комплексов с металлами. [c.305]

    Исследование кинетики окисления С.чНб, -СдНа и С4Н8 на за-кисно-медном контакте подтвердило параллельно-последовательную схему окисления олефинов при низких температурах эти процессы идут в основном параллельно, а при более высоких включается процесс доокисления продукта. Доля последовательных реакций зависит от температуры, активности катализатора и его макроструктуры. Кинетические данные реакций окисления олефинов сведены в таблицу. Из нее видно, что скорости окисления олефинов в условиях избытка последних по отношению к кислороду в смеси пропорциональны концентрации О2 в степени, близкой к 1, а порядок по олефину близок к нулю. Продукты реакции оказывают на все эти процессы тормозящее действие. Причиной торможения, по-видимому, является конкуренция за поверхность между исходными веществами и продуктами окисления. Кинетика полного и неполного окисления удовлетворительно описывается уравнениями типа Лэнгмюр—Швабовского, что, вероятно, обусловлено тем, что [c.20]

    В реакции окисления арахидоновой кислоты до простагландина На арахидоновая кислота и донор электронов выступают как не- мультиплицирующие субстраты. В работах [27, 29] были детально рассмотрены результаты исследования кинетики действия РОН-син-тетазы и строго показана немультипликативность этих двух субстратов. Кинетика действия РОН-синтетазы включает целый набор интермедиатов, однако без ущерба для общности рассмотрения она может быхь описана простейшей кинетической схемой (8), где Х1 — свободная форма фермента, Хг — комплекс фермента с арахидоновой кислотой, Xi — комплекс фермента со вторым субстратом, ки кг — лимитирующие стадии химической трансформации. [c.20]

    Хотя окислительно-восстановительные реакции рассматривались как Процессы иврениса э. ектрона, наблюдаемая кинетика часто указывает на то, что истинный механизм не включает межмолекулярного переноса электронов, даже в том случае, если и можно непосредственно измерить окислительно-восстановительный потенциал для одной или другой из систем. Так, например, степень окисления хлора меняется при его реакции со щелочами С1—С1+0Н - С1 +С1—ОН, но почти достоверно установлено, что переносится СГ от СГ к ОН и все смещения электронов являются исключительно внутренними. Аналогично окисление сульфита нонами хлората, по-видимому, включает перенос атомов кислорода. Восстановление различных веществ ионами закисного железа, вероятно, часто происходит путем переноса атома водорода из гидратиой оболочки иона Ре(Н20)Г+Х — —Ре(Н,0)50Н +ХН. После переноса железо оказы- [c.202]

    Подробнее всего кинетика и механизм окисления спиртов изучены на окисных катализаторах. Согласно [126], реакция окисления метанола в формальдегид на железо-молибденовом окисном катализаторе протекает по схеме попеременного восстановления— окисления поверхности. Стадия восстановления сложна и включает, по-видимому, промежуточное образование поверхностного комплекса типа алкого-лята [127[. [c.209]

    Таким образом, скорость окисления тиоацетамида не зависит от концентрации окислителя, т. е. имеет нулевой порядок по [Ре(СЫ)бР- и первый порядок по тиоацетампду и ионам ОН . Однако при низких концентрациях окислителя лимитирует стадия (б), и тогда для расчета скорости реакции следует использовать уравнение (4). Лимитирующая стадия (б) включает взаимодействие двух отрицательно заряженных ионов, поэтому в соответствии с уравнением (XV.46) скорость этой реакции возрастает с увеличением ионной силы раствора (в частности, при введении КС1 в реакционную смесь), а также при увеличении диэлектрической постоянной среды (XV.48). Поскольку скорости окисления тиомочевины и тиоацетамида очень чувствительны к концентрации щелочи, кинетику этих реакций изучают при постоянном значении pH и реакции проводят в присутствии карбонат-бикарбонатной буферной смеси, которая поддерживает pH 11. Исследование кинетики окисления тиомочевины и тиоацетамида облегчается тем, что реакция идет с заметной скоростью при температурах выше 30°С и замедляется при охлаждении ход реакции можно контролировать измерением концентрации гексацианоферрата (III) в растворе, используя фотоэлектроколориметр с синим светофильтром (400—450 нм) гек-сацианоферрат ( I) не поглощает в этой области. [c.374]

    Применение. В принципе метод ЭПР позволяет определять строение парамагнитных центров, их взаимодействие друг с другом и другими окружающими молекулами методом ЭПР можно измерять концентрацию парамагнитных частиц ЭПР можно применять для изучения вещества в любом агрегатном состоянии. Эти качества делают ЭПР уникальным методом исследования кинетики и механизма химич. реакций, протекающих с участием парамаппиных частиц. В рамках этой статьи трудно перечислить все те области химии, где наиболее плодотворно применяется метод ЭПР. Вот нек-рые из них радиационная химия, фотохимия, гетерогенный катализ, исследование триплет-пых состояний (как основных, так и фотовозбужденных), изучение процессов горения, исследование закономерностей реакций свободных радикалов в жидкой и твердой фазах, изучение одноэлектронных окислительно-восстановительных процессов, включая электрохимич. восстановление и окисление, изучение конформационных переходов в сложных алициклич. свободных радикалах, исследование характера впутри-кристаллич. 1голей в ионных кристаллах. [c.484]

    Изучена кинетика фотосенсибилизированного окисления и довольно подробно рассматривались механизмы этих процессов [305, 308—ЗП]. Для получения высоких выходов следует использовать очень разбавленные растворы скорость потребления кислорода олефином максимальна, при условии если его концентрация составляет приблизительно 3—4%. Можно сделать вывод, согласно которому олефин может дезактивировать фотовозбужденную молекулу сенсибилизатора. Предложен механизм, который согласуется с экспериментальными данными. Этот механизм включает активацию молекулы фотосенсибилизатора до бирадикального состояния при поглощении излучения и реакцию между этими бирадикалами и молекулой кислорода с образованием слабо связанного соединения. Реакция между этим соединением и олефином дает затем продукт реакции и регенерирует сенсибилизатор. Вначале продукт находится в состоянии с высокой энергией, однако он легко стабилизируется в результате потери энергии при столкновении с другими молекулами или в результате перегруппировки. Снижают выход следуюп1,ие реакции 1) дезактивация при столкновении молекул сенсибилизатора с молекулами олефина. как указывалось выше, и 2) разложение бирадикального кислородного сое-динения] с обратным образованием сенсибилизатора и кислорода. [c.284]

    В реакции окисления арахидоновой кислоты до простагландина Н2 арахидоновая кислота и донор электронов выступают как немультиплицирующие субстраты. Выше детально рассмотрены результаты исследования кинетики действия РСН-синтетазы и показана немультипликатив-ность этих двух субстратов. Кинетика действия РСН-синтетазы включает целый набор интермедиатов, однако без ущерба для общности рассмотрения, она может быть описана простейшей кинетической схемой [c.212]

    Наряду с другими исследователями окислением тетралина занимались Робертсон и Уотерса также Вудворт и Миро-биан . Последние изучали кинетику окисления в условиях инициирования, включая получение радикалов из органических соединений как термически, так и с помощью металлов (например, ацетата кобальта). Робертсон и Уотерс предложили возможную интерпретацию кинетики этой реакции и установили состав полученных продуктов. [c.118]

    И, поскольку в этой модели расщепление С—Н-связи включает как изгиб, так и растяжение связи, можно ожидать, что будет проявляться лишь небольшой кинетический изотопный эффект (см. книгу Белла в списке общей литературы, стр. 87). Кинетика окисления молекулярным бромом услолшяется тем, что по мере образования анионы брома выводят из реакции эквивалент брома в виде неактивного комплексного аниона Вг-Г, но эту трудность можно обойти, используя в качестве окислителя бромат. К тому же бром быстро вступает в реакцию замещения с образующимися альдегидами или кетонами Показано, что в кислом растворе начальная скорость окисления этанола не зависит ни от кислотности, ни от концентрации иона брома, а поэтому альтернативный механизм окисления через обратимое окисление до эфира гппобромита может быть отвергнут. [c.83]

    В последнее десятилетие стало ясно, что исследования формальной кинетики дают мало сведений о газофазном окислении углеводородов. Были развиты новые экспериментальные методы (включая газовую хроматографию, ЭПР и ЯМР измерения, изотопные методики), представляющие широкие возможности для выяснения конкретных механизмов реакций. Упомянутые выше методы используются двумя способами один из них ваключается в аналитическом определении промежуточных и конечных продуктов (см., например, [2]), другой — состоит в изучении отдельных элементарных стадий (радикальных реакций, реакций между атомами и молекулами) независимо от всей сложной реакции (см., например, [3]). Применение КИМ дает возможность объединить эти два пути с помощью аналитических измерений в этом методе получают данные об элементарных стадиях. [c.60]


Смотреть страницы где упоминается термин Кинетика реакций (включая реакции окисления): [c.104]    [c.305]    [c.141]    [c.195]    [c.389]    [c.48]    [c.125]    [c.125]    [c.48]    [c.119]    [c.20]    [c.114]    [c.333]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами том 2 -> Кинетика реакций (включая реакции окисления)




ПОИСК





Смотрите так же термины и статьи:

Кинетика окисления

Реакции окисления



© 2025 chem21.info Реклама на сайте