Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция повышенном давлении

    Очистку газа методом физической абсорбции целесообразно осуществлять только при средних и высоких парциальных давлениях кислых компонентов газа. При низких парциальных давлениях степень извлечения кислых компонентов невелика. Растворимость извлекаемых компонентов в абсорбенте можно повысить в некоторой степени путем повышения давления в абсорбере, но при этом одновременно увеличивается растворимость углеводородных компонентов газа и, следовательно, селективность процесса будет оставаться низкой. Кислые газы, получаемые на стадии регенерации и используемые обычно для получения серы, содержат в этом случае большое количество углеводородов, что нежелательно для процесса Клауса. Повысить концентрацию кислых компонентов можно ступенчатой дегазацией насыщенного абсорбента с постепенным понижением давления, но в газах дегазации, как правило, помимо углеводородов присутствуют сероводород и диоксид углерода, и [c.42]


    Вначале на установках АВТ с блоком стабилизации и абсорбции абсолютное давление в абсорбере рекомендовалось поддерживать 10 кгс/см2. В дальнейшем оказалось достаточным 5 кгс/см . При необходимости повышения давления сухого газа, выходящего-с верха абсорбера, устанавливают дожимные компрессоры соответствующей производительности. Стабилизатор работает удовлетворительно при абсолютном давлении не менее 10—12 кгс/см . Аппаратурное оформление блока стабилизации и абсорбции установок АВТ и их размер определяются углеводородным составом бензиновых фракций, газа и их количеством. Стабилизационная колонна оборудуется ректификационными тарелками в количестве 40 шт. [c.151]

Таблица 25. Показатели процесса абсорбции бензола при обычном и повышенном давлении [19, с. 86] Таблица 25. <a href="/info/26542">Показатели процесса</a> <a href="/info/29943">абсорбции бензола</a> при обычном и повышенном давлении [19, с. 86]
    Насыщенный абсорбент поступает в турбину 3, где снижается его давление с давления абсорбции до давления десорбции. Турбина 3 служит приводом насоса, что существенно снижает энергетические затраты на перекачку абсорбента. Насыщенный абсорбент после снижения давления поступает в теплообменник 5 с целью повышения его температуры и далее в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент VI, предназначенный для снижения парциального давления целевых компонентов в газовой фазе с целью повышения движущей силы массопередачи. Из верхней части десорбера 6 уходят целевые компоненты V, из нижней — регенерированный абсорбент III. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 насосом через воздушный или водяной холодильник 2 возвращается в абсорбер 1. [c.72]

    В ряде случаев целесообразно проведение абсорбции и десорбции под различными давлениями, поскольку для десорбции благоприятно пониженное, а для абсорбции—повышенное давление. Так, если абсорбцию ведут при атмосферном давлении, то десорбцию проводят в вакууме. Схема установки остается такой же, как показано на рис. 211, с той разницей, что десорбированный газ отсасывают из сепаратора вакуум-насосом. Десорбция в вакууме используется при вакуум-карбонатном методе очистки газов от НгЗ [6] и при извлечении ЗОз из газов растворами суль-фита-бисульфита аммония 14]. В этих случаях применение вакуума вызывает понижение температуры десорбции и снижение расхода пара на десорбцию. [c.668]


    Растворимость этилена увеличивается с повышением концентрации серной кислоты, поэтому применяют 97—98%-ную кислоту. Оптимальная температура процесса 65—75°С. С дальнейшим повышением температуры уменьшается количество образующейся этилсерной кислоты. Влияние давления на абсорбцию этилена представлено на рис. 66. С повышением давления возрастают скорость абсорбции и растворимость этилена в серной кислоте. Большое значение для процесса имеет интенсивность перемешива- [c.169]

    Из рассмотренных способов интенсификации процесса абсорбции — повышение давления, увеличение удельного расхода абсорбента, уменьшение молекулярной массы абсорбента и понижение средней температуры абсорбции — наиболее эффективным является последний, так как он больше всего способствует поглощению целевых углеводородов. [c.184]

    Давление насыщенных паров. Необходимым требованием, предъявляемым к растворителю, является малое парциальное давление его паров, особенно при температуре абсорбции. Повышение давления паров приводит к загрязнению газовых потоков и потерям растворителя. Промывка газов водой (или другие способы улавливания паров) необходима почти во всех случаях, но при высоком парциальном давлении паров она связана с большим расходом тепла на ректификацию водных растворов. [c.35]

    Абсорбционный метод отбензинивания газов является наиболее распространенным. Процесс основан на избирательном поглощении жидкостью отдельных компонентов газовой смеси. В качестве абсорбента применяют бензин, керосин или солярный дистиллят. Чем тяжелее углеводороды, тем больше их растворяется в абсорбенте. Количество растворенных углеводородов возрастает с повышением давления и понижением температуры (при абсорбции выделяется тепло в количестве, равном примерно теплоте конденсации растворенного углеводорода). [c.165]

    Одним из наиболее эффективных и экономичных факторов интенсификации процесса производства слабой азотной кислоты является применение в отделении абсорбции повышенного давления. По этой схеме процесс конверсии аммиака проводится под атмосферным давлением. Отделение кислотной и щелочной абсорбции состоит из многоступенчатой башенной системы, в конструктивном отношении мало отличающейся от обычной, работающей под атмосферным давлением. [c.409]

    При малых плотностях орошения не вся поверхность насадки оказывается смоченной, а следовательно, активной для массопередачи. Поэтому выбор плотности орошения зависит (особенно в случае абсорбции при повышенных давлениях) не столько от гидравлического сопротивления, сколько от стремления увеличить активную поверхность насадки и, следовательно, интенсивность массообмена. [c.68]

    Кислород и кислородсодержащие вещества также являются ядами для катализатора синтеза аммиака. Для удаления из газа двуокиси углерода применяют водную очистку под давлением, очистку при атмосферном и повышенном давлениях мопоэтаноламином, очистку горячим раствором поташа под давлением, очистку водными растворами аммиака, низкотемпературную абсорбцию метанолом, очистку водным раствором щелочи под давлением для удаления остатков СО2. [c.46]

    Ожижение (конденсацию) углеводородных газов проводят понижением их температуры (охлаждением) при повышении давления. Чем выше молекулярный вес газообразного углеводорода, тем ниже может быть давление и выше температура, при которой произойдет ожижение. Для ожижения низкомолекулярных углеводородов (метана, этана) требуется глубокое охлаждение (порядка —100° С) и высокое давление (до 42 ат) Двухфазную систему жидкость — газ можно получить, используя метод абсорбции, т. е. поглощения жидкостью (растворителем) газообразных углеводородов. В отличие от конденсационного метода ожижения в случае абсорбции температура охлаждения достигает —42° С при 42 ат. [c.262]

    Одним из перспективных направлений в развитии сернокислотной промышленности является повышение давления на всех стадиях получения продукции. В настоящее время очевидны преимущества этого способа по сравнению с широко распространенной технологией получения серной кислоты по методу двойного контактирования и двойной абсорбции под атмосферным давлением. В работе [29] выполнен автоматизированный синтез оптимального агрегата производства серной кислоты под давлением 1,2 МПа и показана его высокая экономическая эффективность по сравнению с зарубежными аналогами. Синтез оптимального агрегата был выполнен в традиционной постановке структурно-параметрической оптимизации [30]. [c.272]


    Применение физических поглотителей предпочтительно при высоких парциальных давлениях кислых компонентов в сырьевом газе. Повышение давления абсорбции приводит к снижению количества циркулирующего в системе абсорбента и, как следствие, к уменьшению расхода тепла в блоке регенерации. [c.43]

    Изменение условий обычно связано с повышением (понижением) температуры (что не всегда желательно) и ростом капитальных и энергетических затрат. Поэтому обычно на первой стадии проводится разделение смеси на газовую и жидкую фазы (что при большой разности температур не представляет труда) с последующей раздельной их переработкой. Причем газовая фаза в дальнейшем может быть разделена как ректификацией (при повышенном давлении), так и другими способами (абсорбцией, мембранными процессами, адсорбцией и т. д.). Выбор того или иного способа будет опять определяться в значительной степени свойствами смеси. [c.96]

    Производство разбавленной азотной кислоты осуществляется с применением следующих систем 1) работающих под атмосферным давлением 2) работающих под повышенным давлением и 3) комбинированных, в которых окисление аммиака осуществляется под давлением (3—4)10 Па, а окисление N0 и абсорбцию N02 водой проводят под повышенным давлением (8—12)105 Па. [c.105]

    Из изложенного следует, что к факторам, улучшающим условия абсорбции, относятся повышенное давление и пониженная температура, а к факторам, способствующим десорбции, пониженное давление, повышенная температура и прибавление к абсорбенту добавок, уменьшающих растворимость газов в жидкостях. [c.283]

    Основные недостатки барботажных абсорберов — сложность конструкции и высокое гидравлическое сопротивление, связанное При пропускании больших количеств газа с значительными затратами энергии на перемещение газа через аппарат. Поэтому барботажные абсорберы применяют преимущественно в тех случаях, когда абсорбция ведется под повышенным давлением, так как при этом высокое гидравлическое сопротивление не существенно. [c.602]

    Кроме того, как следует из выражения (VI.4), фактор абсорбции тем больше, чем больше расход абсорбента I и меньше константа равновесия К. Откуда вытекает, что понижение температуры и повышение давления благоприятствуют процессу абсорбции. [c.199]

    Экономия от снижения стоимости сырого бензола не покрывает расходов на сжатие газа при использовании установок малой единичной мощности, оснащенных поршневыми компрессорами. Абсорбция под давлением становится рентабельной, если в дальнейшем коксовый газ используется при повышенном давлении (передача газа в сеть дальнего газоснабжения, фракционная конденсация газа с выделением водорода, использование коксового газа для вдувания в доменные печи). Использование газа при повышенном давлении высокорентабельно на установках большой единичной мощности, оснащенных центробежными компрессорами, и особенно в случае использования газотурбинного привода [21]. Оптимальным давлением, как показано технико-экономическим анализом [22], является 0,8 МПа. [c.154]

    Повышение давления благоприятно сказывается на процессе абсорбции. Оно приводит к увеличению растворимости газа в абсорбенте, позволяет снизить удельный расход абсорбента и уменьшить число тарелок в абсорбере. Однако в случае необходимости предварительного сжатия газа возрастает расход потребляемой энергии, что часто лимитирует величину выбранного давления в аппарате. [c.214]

    Выделение С4-фракции из контактных газов реакции осуществляется абсорбционным методом с предварительным комприми-рованием контактного газа. Существенный интерес представляет бескомпрессорная схема выделения углеводородной фракции из контактного газа. В этом случае реакцию проводят при повышенном давлении. На рисунке приведена недавно опубликованная принципиальная технологическая схема процесса окислительного дегидрирования н-бутенов, осуществленная на заводе фирмы Филлипс в г. Боргере (США) [28]. Воздух компримируют и смешивают с водяным паром. Смесь нагревают в печи, смешивают с бутеновым сырьем и пропускают над катализатором окислительного дегидрирования, помещенным в реактор непрерывного действия. Тепло выходящего из реактора потока используется в котле-утилизаторе для производства технологического пара. Затем поток подвергается закалочному и обычному охлаждению и промывается от кислородсодержащих соединений. Фракцию С4 выделяют масляной абсорбцией и после отпарки ее из масла в десор-бере подают на конечную стадию очистки. Непрореагировавшие бутены возвращают в реактор. Небольшое количество кислород-содержащих соединений, имеющихся в промывных водах, отпаривают и сжигают в печи подогрева пара и воздуха. [c.691]

    В некоторых случаях экономически оправдывается ведение процесса абсорбции при пониженных температурах с использованием специальных хладагентов испаряющегося аммиака, пропана и др. в этом случае затраты на сооружение и эксплуатацию специальных холодильных установок меньше, чем затраты, связанные с повышением давления в абсорбере или увеличением расхода абсорбента. [c.230]

    При расчете процесса абсорбции необходимо установить коэффициент извлечения компонентов газа абсорбентом. Коэффициентом извлечения ф называется отношение числа молей данного компонента, извлеченного в абсорбере, к числу его молей в исходном (жирном) газе. Коэффициент извлечения при заданйом режиме абсорбции зависит от физико-химических свойств и количества извлекаемых компонентов, а также количества и качества подаваемого абсорбента. Повышение давления в абсорбере и увеличение количества [c.271]

    Абсорбция сырого бензола проводится на большинстве предприятий при атмосферном давлении (избыточное давление около 10 кПа) в насадочных абсорберах. Эффективность абсорбции увеличивается при повышении давления, что иллюстрируется данными табл. 25. Применение абсорбции под давлением позволяет на 15—20% снизить себестоимость бензола, а также повысить сте-. [c.153]

    При высокой температуре в воздухе, азоте или водороде. Окисление на. воздухе протекает при температурах выше 450 С с образованием оксидов титана и нитридов. Температура воспламенения падает с повышением давления воздуха, что иногда приводит к локализованному выгоранию изготовленных из титанового сплава лопаток компрессоров газовых турбин [42]. Гидрид титана легко образуется при температурах выше 250 °С, а при более низких температурах — при катодном выделении водорода. Абсорбция кислорода, азота или водорода при повышенных температурах приводит к охрупчиванию металла. [c.378]

    Для извлечения из газа СОа применяют растворы щелочей, слабых органических оснований, например моноэтаноламинов, а также воду. На многих заводах грубую очистку газа от СО 2 производят абсорбцией ее водой, а тонкую — раствором NaOH под высоким давлением. Получает широкое распространение поглощение Oj растворами моноэтаноламинов под повышенным давлением. [c.208]

    Компрессия и конденсация — процессы сжатия газа компрессорами и охлаждения его в холодильниках с образованием двухфазной системы газа и жидкости. С повышением давления и понижением температуры выход жидкой фазы возрастает, причем сконденсировавшиеся углеводороды облегчают переходлегких ком — понентов в жидкое состояние, растворяя их. Обычно применяют многоступенчатые (2, 3 и более) системы компрессии и охлаждения, используя в качестве хладоагентов воду, воздух, испаряющиеся аммиак, пропан или этан. Разделение сжатых и охлажденных газов осуп1,ествляют в газосепараторах, откуда конденсат и газ направля — ют на дальнейшее фракционирование методами ректификации или абсорбции. [c.203]

    Обычно абсорбция и десорбция объединяются в единый производственный процесс, В процессе абсорбции при повышенном давлении и иоииженпой температуре в массообменном аппарате — абсорбере осуществляется поглощение целевых компонентов специально подобранным растворителем-абсорбентом. Абсорбент с растворенными в нем целевыми компонентами называется насыщенным или отработавшим. Насыщенный абсорбент направляется на десорбцию, т, е, удаление из него целевых комионентов в результате снижения давления и (или) повышения темиературы. [c.71]

    Двуокись углерода из газа для синтеза аммаака чаще всего предварительно вымывается водой при повышенном давлении (10—30 ат).- Использование относительно большой растворимости СОг в воде (и малой растворимости На и Na) является основой зтого метода. Расширение водного раствора, покидающего скруббер, в турбине позволяет нагнетать воду для повторной абсорбции СОг (рис. IX-2). Вследствие этого нагрузка электродвигателя 6, приводящего в движение насос 5, уменьшается на 30—50%.Вода из турбины поступает на предв-арительную дегазацию, поскольку отходящий газ, содержащий 60% Oj и 40% Нг и Nj, можно вернуть на первую ступень компрессора и затем в производство. Благодаря этому не только уменьшаются потери водорода, но одновременно после конечного дегазатора, помещенного на регенерационной башне, получается чистый Oj ( 98—99%). Двуокись углерода такой чистоты можно применять в производстве мочевины (см. стр. 379) или сухого льда. В данном случае разность давлений используется как движущая сила для выполнения работы нагнетания. [c.353]

    Применение повышенного давления в производстве серной кислоты дает следующие преимущества уменьшаются объемы перерабатываемого газа, а следовательно, и размеры аппаратов сдвигается равйовесие основных реакций — окисления сернистого ангидрида и абсорбции серного ангидрида в направлении более высоких равновесных значений повышается надежность и обеспечивается длительная устойчивая работа агрегата, так как ужесточаются требования к качеству оборудования и монтажа агрегата. [c.222]

    При переработке нитрозных газов в системах, работающих под атмосферным давлением, с использованием воздушно-аммиачной смеси (10—127о ЫНз) при обычной температуре абсорбции N02 можно получить только разбавленную 47—50%-иую азотную кислоту. Снижением температуры абсорбции можно сместить равновесие в сторону образования более концентрированной азотной кислоты, однако это дает незначительный результат вследствие уменьшения скорости реакции взаимодействия диоксида азота с водой. Повышение давления до 1 МПа позволяет получать СО—62%-ную азотную кислоту. При переработке аммиачно-воздушной смеси в азотную кислоту под атмосферным давлением наиболее медленной стадией процесса является окисление оксида а. юта до диоксида. Поэтому требуются большие объемы окислительно-абсорбционных башен. Применение в производстве азотной кислоты воздуха, обогащенного кислородом, или чистого кислорода позволяет получать нитрозные газы с повышенным содержанием оксида азота и увеличить скорость реакции окисления N0 в N02. [c.105]

    Давление газа относительно мало влияет на поглощение, но оказывает значительное влияние на растворение газа. При низком давлении поглотительная емкость растворителя настолько ниже емкости химического поглотителя, что использование принципа растворения неэффективно, так как требуется циркуляция большого количества абсорбента. С повышением давления поглотительная емкость растворителя растет, становится сравнимой и даже превосходит поглотительную емкость химического поглотителя. Выбор поглотителя поэтол1у определяется давлением абсорбции. Физические поглотители применяют только при высоком давлении. [c.114]

    На НПЗ и НХЗ абсорбция применяется в блоках газоразделения для выделения целевых компонентов из смеси углеводородов. Эффективность абсорбции зависит от температуры и давления, при которых проводится процесс, свойств газа и абсорбента, скорости движения абсорбируемого газа, количества подаваемого абсорбента. Повышение давления или уменьшение температуры в абсорбере способствуют лучшему извлечению компонентов. Однако, поскольку работа при повышенном давлении и пониженных температурах связана с дополнительными эксплуатационными затратами, выбор параметров должен определяться на базе технико-экономических расчетов. Абсорбционное извлечение углеводородов из смесей с большим и средним количеством извлекаемых компонентов проводится при давлении не выше 1,6 МПа. Если газ поступает на переработку с более высоким давлением, то абсорбция проводится пр атом павлении. [c.111]

    Давление во фракционирующем абсорбере поддерживают обычно равным от 12 до 20 ат, хотя на некоторых установках эксплуатируют ся аппараты, давление в которых достигает 30 ат. При повышении давления поглощение газовых компонентов возрастает, но следует иметь в виду, что повышение давления в пределах 12—20 ат относительно мало способствует поглощению пропана и в то же время значительно увеличивается нежелательная абсорбция этана (константы равновесия углеводородов Сх — Са уменьшаются с повышением давления в большей степени, чем для yглeвoдop(J-дов Сз С4). [c.311]

    Содержание сырого бензола в коксовом газе составляет в среднем 30—35 г/м Извлекают бензольные углеводороды из газа их конденсацией при пониженных температурах, адсорбцией на твердых адсорбентах, абсорбцией при атмосферном или повышенном давлении. Абсорбция используется наиболее широко. На рис. 21 представлена принципиальная технологическая схема абсорбции бензольных углеводородов из коксового газа. В качестве сорбентов используют масла каменноугольного и нефтяного (соляровое масло) происхождения. Имея меньшую молекулярную массу (170—180), каменноугольное поглотительное масло обладает большей поглощающей способностью (каменноугольное масло может поглощать до 2,0—2,5% сырого бензола по сравнб нию с 1,5—2,0% в соляровом масле). Расход подаваемого в абсорберы каменноугольного масла на 1 т коксуемой шихты равен 0,5 м против 0,65 для солярового масла [19, с. 83]. Соответственно меньше расход энергии на перекачивание и нагревание масла. [c.152]

    Состояние системы N02-HN0з-H20 и, следовательно, концентрация получаемой азотной кислоты зависит от температуры, давления, парциального давления оксида азота (IV) в поглощаемой газовой смеси и концентрации образовавшейся кислоты. При понижении температуры и концентрации кислоты и повышения давления степень абсорбции оксида азота (IV) водной азотной кислотой возрастает, при том тем интенсивнее, чем выше концентрация его в нитрозных газах. При атмосферном давлении и температуре 25°С абсорбция оксида азота практически прекращается, когда концентрация кислоты достигнет 0,6 5 мае. долей (рис. 15.11). [c.222]

    С повышением давления абсорбции эффективность извлечения целевых компонентов из газа сепарации возрастает. Однако, при этом также увеличивается содержание в стабильной нефти низкокипящих компонентов С 1...С3. С другой стороны, при возможности увеличения давления насыщенных паров стабильной нефти предпочтительно смешение и разделение вести при большем давлении путем эжектирования газа сепарации частью нефти. В этом случае расход нефти на эжекцию должен бьп-ь достаточно большимх - до 10% масс, на нестабильную нефть. С повышением давления абсорбции повышается коэффициент извлечения (рис.2.2). Как и в каждом массообменном процессе, степень эффективности процесса абсорбции определяется также степенью достигнутого равновесия фаз. При проведении смешения в трубопроводе до холодильника-конденсатора и емкости разделения равновесие фаз близко к теоретическому. [c.27]


Смотреть страницы где упоминается термин Абсорбция повышенном давлении: [c.408]    [c.595]    [c.71]    [c.180]    [c.57]    [c.20]    [c.475]    [c.212]    [c.163]    [c.140]    [c.226]   
Технология азотной кислоты Издание 3 (1970) -- [ c.161 , c.166 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Давление повышенное

Давление при абсорбции

Технологическое оформление процесса абсорбции окислов азота при повышенном давлении



© 2025 chem21.info Реклама на сайте