Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды прокариот

    Запасные липиды прокариот чаще всего представлены поли- -гидроксимасляной кислотой (ПОМ), которая откладывается при из- [c.227]

    Все ЛИПИДЫ — производные глицерина — содержат один или несколько остатков жирных кислот, состав которых у прокариот весьма своеобразен. В основном это насыщенные или мононенасыщенные жирные кислоты с 16—18-углеродными атомами. Полиненасыщенные жирные кислоты у прокариот отсутствуют. Исключение составляют цианобактерии, у разных видов которых найдены полиненасыщенные жирные кислоты типа i6 2, i8 2, i8 3, i8 4. ПоМИМО обыЧНЫХ ЖИрНЫХ КИСЛОТ, т. е. обнаруживаемых и в клетках эукариот, в составе мембранных липидов прокариот находят и кислоты, не встречающиеся, как правило, в мембранах эукариот. Это циклопропановые жирные кислоты, содержащие одно или больше трехчленных колец, присоединенных вдоль углеводородной цепи. Другие, редко встречающиеся и обнаруженные практически только у прокариот кислоты — это разветвленные жирные кислоты с 15—17-углеродными атомами. [c.40]


    Химический состав клеток в принципе одинаков у всех организмов. Клетки прокариот содержат от 70 до 90 % воды. Основную массу сухих веществ, на долю которых приходятся остальные 10—30 %, составляют белки, нуклеиновые кислоты, липиды и полисахариды. Несколько процентов сухого вещества клеток приходится на низкомолекулярные органические вещества и соли (табл. 9). [c.81]

    У прокариот липиды входят в состав клеточных мембран и клеточной стенки, служат запасными веществами, являются ком- [c.87]

    Проблема консервирования энергии решена прокариотами путем синтеза восстановленных высокополимерных молекул, главным образом полисахаридов, реже липидов или полипептидов. Молекулы запасных веществ плотно упакованы в гранулах и часто окружены белковой оболочкой (см. табл. 5). В таком виде они находятся в осмотически неактивном состоянии, что очень важно для клетки. [c.109]

    Фотодинамический эффект обнаружен у всех живых организмов. У прокариот в результате фотодинамического действия индуцируются повреждения многих типов утрата способности формировать колонии, повреждение ДНК, белков, клеточной мембраны. Причина повреждений — фотоокисление некоторых аминокислот (метионина, гистидина, триптофана и др.), нуклеозидов, липидов, полисахаридов и других клеточных компонентов. [c.333]

    Преимущественно по химическому механизму тушение 02 осуществляется насыщенными жирными кислотами, липидами, аминокислотами, нуклеотидами и другими соединениями. Механизмы химического тушения разнообразны, но в большинстве случаев начальной стадией является образование лабильной циклической перекиси с последующим ее разложением, которое приводит к возникновению свободных радикалов. Химическое тушение 02 может приводить в клетке к существенным деструктивным последствиям. К тушению в основном по физическому механизму способны молекулы разных химических соединений. Наиболее эффективны в этом отношении каротиноиды, широко распространенные в мире прокариот. Они обнаружены в клетках многих аэробных хемотрофов, являются обязательным компонентом пигментного аппарата всех фототрофов. В клетках фотосинтезирующих [c.338]

    Элементарной физической единицей живого является клетка это наименьшая жизнеспособная единица. По своему химическому составу все живые существа очень сходны. Основные компоненты всякой клетки-это дезоксирибонуклеиновая кислота (ДНК), рибонуклеиновые кислоты (РНК), белки, липиды и фосфолипиды. Изучение тонкого строения различных типов клеток позволило, однако, выявить заметные различия между бактериями и цианобактериями, с одной стороны, и животными и растениями (включая также их микроскопически малых представителей)-с другой. Различия между теми и другими настолько глубоки, что эти две группы организмов противопоставляются друг другу как прокариоты и эукариоты. Прокариот мы вправе рассматривать как реликтовые формы, сохранившиеся с самых ранних времен биологической эволюции, а появление эукариотических форм, возникших из прокариот,-как величайший скачок в истории жизни. [c.11]


    Химическая структура пептидогликана грамотрицательных прокариот в основном сходна со структурой типичного пептидогликана грамположительных прокариот (см. рис. 6, 7, А). Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из полисахаридов, белков и липидов (рис. 10, А). [c.29]

    Химический состав мембран прокариот. ЦПМ — белково-липидный комплекс, в котором белки составляют 50—75%, липиды — от 15 до 45%. Кроме того, в составе мембран обнаружено небольшое количество углеводов (табл. 4). Как правило, липиды и белки состав- [c.38]

    Набор жирных кислот в липидах мембран прокариот также чрезвычайно видоспецифичен. У некоторых грамположительных бактерий С15-жирная кислота с разветвленной цепью может составлять до 90% всех жирных кислот липидов. Главная функция липидов — поддержание механической стабильности мембраны и придание ей гидрофобных свойств. [c.40]

    Общими свойствами липидов является их нерастворимость в воде и растворимость в органических растворителях. У прокариот липиды входят в состав клеточных мембран и клеточной стенки, служат запасными веществами, являются компонентами пигментных систем и цепей электронного транспорта. Ниже мы рассмотрим синтез жирных кислот и фосфолипидов, являющихся универсальным компонентом клеточных мембран. [c.73]

    Наиболее широкое стратиграфическое распространение свойственно синезеленым водорослям. Они относятся к прокариотам, что сближает их с бактериями. Есть и другие признаки, более свойственные бактериям строение клеточной стенки, наличие газовых вакуолей, способность к фиксации азота и др. В настояшее время их чаще называют цианобактериями. Они существуют на Земле более 3 млрд лет. Автотрофные формы при фотосинтезе используют СО2 и выделяют кислород благодаря их жизнедеятельности была создана кислородная атмосфера Земли. В течение всей истории своего развития они не претерпели изменений. В протерозойских бассейнах они были подавляющей формой жизни и поставщиком ОВ. Многими исследователями отмечались консервативность цианобактерий, их экологическая выносливость. Синезеленый цвет определяется наличием синего и бурого пигментов в сочетании с хлорофиллом. Некоторые формы имеют и другие пигменты — от красного до черного. Эти водоросли токсичны, хищны, подавляют развитие других водорослей и зоопланктона, радиорезистентны, приспособлены жить в темноте, в горячих и холодных водах. Очень важным свойством этих водорослей является антибактериальное действие их липидов (циано-фитина и хлороллина). Это предопределило устойчивость ОВ синезеленых (как и некоторых зеленых водорослей) к микробному разрушению. Цианобактерии представлены как одноклеточными, так и многоклеточными формами. [c.111]

    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (К. 81ашег, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. XX в. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру два электронно-плотных слоя каждый толщиной 2,5 —3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). [c.18]

    Кроме того, в составе мембран обнаружено небольшое количество углеводов. Как правило, липиды и белки составляют 95 % и больше вещества мембран. Главным липидным компонентом бактериальных мембран являются фосфолипиды — производные 3-фосфоглицерина. Хотя у прокариот найдено множество различных фосфолипидов, набор их в значительной степени родо- и даже видоспецифичен. Широко представлены в бактериальных мембранах различные гликолипиды. Стерины отсутствуют у подавляющего большинства прокариот, за исключением представителей Фуппы микоплазм и некоторых бактерий. Так, в ЦПМ АсИо1ер1азта содержится 10—30 % холестерина, поглощаемого из внешней среды, от общего содержания мембранных липидов. Из других фупп липидов в мембранах прокариот обнаружены каротиноиды, хиноны, углеводороды. [c.46]

    Функции ЦПМ прокариот. ЦПМ прокариот выполняет разнообразные функции, в основном обеспечиваемые локализованными в ней соответствующими ферментными белками. Первоначально была постулирована барьерная функция клеточной мембраны, получившая позднее экспериментальное подтверждение. С помощью специальных переносчиков, называемых транслоказами, через мембрану осуществляется избирательный перенос различных органических и неорганических молекул и ионов. В ней локализованы ферменты, катализирующие конечные этапы синтеза мембранных липидов, компонентов клеточной стенки и некоторых других веществ. [c.49]


    Запасные вещества прокариот представлены полисахаридами, липидами, полипептидами, полифосфатами, отложениями серы (см. рис. 4 табл. 5). Из полисахаридов в клетках откладываются гликоген, крахмал и крахмалоподобное вещество — фанулеза. Последняя — специфический запасной полисахарид анаэробных споровых бактерий фуппы клостридиев. Названные полисахариды построены из остатков глюкозы. В неблагоприятных условиях они используются в качестве источника углерода и энергии. [c.63]

    Липиды накапливаются в виде фанул, резко преломляющих свет и поэтому хорошо различимых в световой микроскоп. Запасным веществом такого рода является полимер Р-оксимасляной кислоты, накапливающийся в клетках многих прокариот. У некоторых бактерий, окисляющих углеводороды, поли-Р-оксимасляная кислота составляет до 70 % сухого вещества клеток. Отложение липидов в клетке происходит в условиях, когда среда богата источником углерода и бедна азотом. Липиды служат для клетки хорошим источником углерода и энергии. [c.63]

    Оксигеназы играют важную роль в процессах биосинтеза, деградации и трансформации клеточных метаболитов ароматических аминокислот, липидов, сахаров, порфиринов, витаминов. Субстратами, на которые воздействуют оксигеназы, часто служат сильно восстановленные не растворимые в воде соединения их окисление приводит к тому, что продукты реакции становятся более растворимыми в воде и, следовательно, биологически активными, что важно для их последующего метаболизирования. У строго анаэробных прокариот кислород, включаемый в молекулу субстрата, происходит не из О2, а из других соединений, например воды. [c.347]

    Пептидогликан образует только внутренний слой клеточной стенки, неплотно прилегая к ЦПМ. У разных видов грамотрицательных прокариот содержание этого гетерополимера колеблется в широких пределах (1-10 % и больше от веществ клеточной стенки). Предполагается, что у большинства видов грамотрицательных прокариот он образует одно- или двухслойную структуру, характеризующуюся весьма редкими поперечными связями между гетерополимерными цепями. Снаружи от пептидогликана располагается дополнительный слой клеточной стенки — наружная мембрана. Она состоит из полисахаридов, белков и липидов. Специфическим компонентом наружной мембраны является липополисахарид сложного молекулярного строения (рис. 1.4). [c.17]

    В усредненном варианте содержание указанных компонентов в клеточной мембране большинства исследованных прокариот распределяется следующим образом белки — до 50%, липиды — до 30%, углеводы — до 20% (из расчета на сухую массу), для эукариот эти данные соответственно таковы белки — до 70-80%, липиды — до 15 — 25%, углеводы — ДО 5 — 15% Однако применительно к структуре различных мембран указанные величины могут сильно различаться и, например, на липиды может приходиться до 50% от сухой массы мембранной фракции эндоп-лазматического ретикулума, тесно связанного с клеточной мембраной А в миелиновых мембранах нервных волокон содержание липидов достигает 80% [c.101]

    В мембранах клеток эукариот (но не прокариот) в значительных количествах обнаружено только несколько стеринов - холестерин, эр-гостерин, -ситостерин и зимостерин. К классу стероидоподобных липидов относят также гопаноиды, которые найдены в бактериях и некоторых растениях. [c.29]

    Среди прокариот различают бактерии и археи. Основанием для выделения этих групп, рассматриваемых в настоящее время как отдельные домены, послужили, прежде всего, результаты сравнения олигонуклеотидных последовательностей 168 рибосомаль-ных РНК, а также выявление различий в составах клеточных стенок, липидов и ряда других особенностей. Большинство известных прокариот составляют различные группы бактерий. Известные археи включают группы метанргенов, отдельных сульфатре-дукторов, экстремальных Галофилов, термоплазм, лишенных клеточных стенок, а тa Qкe экстремально термофильных микроорганизмов, окисляющих и восстанавливающих элементарную серу. За последние годы обнаружено значительное число новых представителей архей и их количество продолжает пополняться. [c.18]

    В цитоплазме прокариотов часто обнаруживаются твердые, жидкие или газообразные включения. Одни из них имеют приспособительные назначения например, газовые вакуоли цианобактерий, позволяющие им регулировать плавучесть в вертикальной плоскости. Другие включения играют роль запасных веществ и откладываются клеткой в условиях обильного питания. В качестве запасных веществ в клетках могут откладываться полисахариды (гликоген, крахмад, гранулеза), липиды (в виде гранул и капелек жира), полифосфаты (такие как волютин), вещества белкового характера (циано фициновые гранулы у цианобактерий). У многих серных бактерий в клетках откладывается молекулярная сера. [c.44]

    Липиды содержатся в плазматических мембранах всех живых клеток. Бактериальные мембраны устроены гораздо проще, чем мембраны эукариотических клеток. Однако известно, что бактерии содержат, кроме фосфолипидов, очень много разнообразных липидов. К ним относятся сфинголипиды, нейтральные липиды, гликолипиды и множество необычных липидов, присутствующих, например, у бактерий таких родов, как oryneba terium, No ardia и My oba terium i[21]. Считалось, что прокариоты не содержат стеринов. Однако недавно было показано, что в бактериях присутствует сквален и множество различных стеринов [22, 28]. Грамотрицательные бактерии содержат в наружной мембране уникальные липиды в липополисахаридных комплексах [21]. В цитоплазме некоторых бактерий накапливается в больших количествах поли-р-гидроксимасляная кислота, служащая источником углерода и энергии. [c.308]

    Большинство бактерий, так же как водоросли и грибы, имеют ригидную клеточную стенку. Но ее состав иной, чем у эукариот. Тпнич1пэ1м компонентом клеточной стенки большинства прокариот, относящихся к эубактериям, является пептидгликан (му-реин), состоящий из Ы-ацетилглюкозамина и Ы-ацетилмурамо-вой кислоты. Ни у одного из эукариот такой полимер не обнаружен. Имеются различия в строении жгутиков, которые обусловливают подвижность ряда эукариот и прокариот, в составе липидов и некоторых других компонентов клеток. [c.18]

    Как и другие архебактерии, метаногены отличаются от остальных прокариот (эубактерий) составом ряда компонентов клеток, в том числе клеточной стенкой, не содержащей муреина, а также характером липидов, в которые не входят жирные кислоты. Большую часть нейтральных липидов составляют простые эфиры глицерина и длинноцепочечного спирта фитанола. [c.620]

    Состав и структурно-функциональная организация молекулярных компонентов биомембран. Классификация, состав, структура, физико-химические и динамические свойства, фукции мембранных липидов. Особенности липидного состава мембран клеток прокариот, эукариот и вирусов. Лиотропный и термотропный мезоморфизм липидов биомембран. Кинки, механизм их образования. Динамическая модель липидного бислоя. Структурная асимметрия липидов. Фазовые переходы липидов в мембране. Связь между фазовым состоянием липидов и функцией мембран. [c.282]

    Бифитанильные цепи термоацидофильных бактерий часто включают пентациклические кольца (рис. 3), присутствие которых сильно модифицирует структуру мембраны. Основные типы структурных элементов, составляющих бактериальную мембрану, изображены на рис. 4. В табл. 2 систематизированы данные о распределении ряда нетипичных липидов у прокариот. По-видимому, особенности мембранного состава позволяют сочетать в структуре бактериальной мембраны рыхлость упаковки с определенной устойчивостью к неблагоприятным факторам среды. [c.11]

    В составе клеточной стенки грамположи-тельных прокариот в небольших количествах также найдены полисахариды, белки и липиды. Для полисахаридов и липидов показана возможность ковалентного связывания с макромолекулами клеточной стенки, в отличие от белков, которые (у тех видов, где имеются формируют на ее внешней поверхности отдельный слой. [c.28]

    Из других групп липидов в бактериальных мембранах широко представлены различные гликолипиды, например, моно- и диглюкозил-диглицериды (табл. 5). Стерины отсутствуют у подавляющего большинства прокариот, за исключением представителей групп микоплазм и цианобактерий. Так, в ЦПМ АскоЫрШзта содержится 10—30% холестерина, поглощаемого из внешней среды, от общего содержания мембранных липидов. В небольших количествах стерины обнаружены у ряда цианобактерий. У галофильных бактерий найден сквален — предшественник в цепи синтеза холестерина. Из других групп липидов в мембранах прокариот обнаружены каротиноиды, хиноны (менахино-ны, убихиноны и др.), углеводороды. [c.39]

    В клетках прокариот компонентами липидов являются в осрювном насыщенные жирные кислоты или содержащие одну двойную связь (мононенасыщенные). Полиненасыщенные жирные кислоты, содержащие две и более двойных связи, найдены до сих пор только у цианобактерий. Образование двойных связей в молекуле кислоты может происходить двумя путями. Один из них, обнаруженный у аэробных прокариот, требует участия молекулярного кислорода и специфического фермента десатуразы  [c.74]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетическими органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, стеролов, некоторые особенности метаболизма, последовательность оснований 165-рибосомной РНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеиды, или наоборот цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп прокариот с фотосинтезом кислородного типа. В настоящее время прохлорофиты рассматриваются в качестве возможных эндосимбионтов, последующая эволюция которых привела к возникновению хлоропластов зеленых водорослей и высших растений. [c.285]

    ЦПМ экстремальных галофилов, имеющая строение, типичное для элементарной мембраны, содержит около 7з липидов и -/з разных белков, включая обычные для бактериальных мембран наборы флавопротеидов и цитохромов. Основная масса липидов экстремальных галофилов отличается от характерных для прокариот липидов тем, что в их молекуле глицерин связан не с остатками жирных кислот, а с С2о-спиртом — дигидрофитолом. Фосфолипидные и гликолипидные иро-изводные глицеринового диэфира могут в определенных условиях составлять до 80% общего содержания липидов в клетках. Помимо уникальных липидов клеточные мембраны экстремальных галофилов содержат много каротиноидных пигментов (основной — бактериоруберин), обусловливающих окраску колоний от розового до красного цвета, что имеет для галофильных бактерий немаловажное значение как средство защиты против избыточной радиации, поскольку для их мест обитания характерна обычно высокая освещенность. [c.287]


Смотреть страницы где упоминается термин Липиды прокариот: [c.15]    [c.28]    [c.105]    [c.125]    [c.162]    [c.134]    [c.134]    [c.399]    [c.16]    [c.42]    [c.40]    [c.70]    [c.140]   
Введение в биомембранологию (1990) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте