Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточные мембраны. Липиды

Рис. 15.28. Схематическое изображение строения клеточной мембраны. Показаны молекулы липидов н белков. Рис. 15.28. <a href="/info/376711">Схематическое изображение</a> <a href="/info/1855113">строения клеточной мембраны</a>. Показаны молекулы липидов н белков.

    В состав клеточных мембран входят в основном белки и липиды, среди- которых преобладают фосфолипиды, составляющие 40—90 % от общего количества липидов в мембране. Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный бислой. В таком бислое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя (рис. 14.2). [c.466]

    Термин мембранао используется вот уже более 100 лет для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клеткн н внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и некоторые из растворенных в ней веществ. В 1851 г. немецким физиолог X. фон Моль описал плазмолиз клеток растений, предположив, что клеточные стенки функционируют как мембраны. В 1855 г. ботаник К. фон Негели наблюдал различия в проникновении пигментов в поврежденные н неповрежденные растительные клетки и исследовал клеточную границу, которой он дал название плазматическая мембрана. Он предположил, что клеточная граница ответственна за осмотические свойства клеток. В 1877 г. немецкий ботаник В. Пфеффер опубликовал свой труд Исследование осмоса , где постулировал существование клеточных мембран, основываясь на сходстве между клетками и осмометрами, имевэщими искусственные полупроницаемые мембраны. В 80-х годах прошлого столетия датский ботаник X. де Фриз продолжил осмометрические исследования растительных клеток, предположив, что неповрежденный слой протоплазмы между плазмалеммой и тонопластом функционирует как мембрана. Его исследования послужили фундаментом при создании физико-химических теорий осмотического давления и электролитической диссоциации голландцем Я. Вант-Гоффом и шведским ученым С. Аррениусом. В 1890 г. немецкий физикохимик и философ В. Оствальд обратил внимание на возможную роль мембран в биоэлектрических процессах. Между 1895 и 1902 годами Э. Овертон измерил проницаемость клеточной мембраны для большого числа соединений и наглядно показал зависимость между растворимостью этих соединений в липидах и способностью их проникать через мембраны. Он предположил, что мембрана имеет липидную природу и содержит холестерин и другие липиды. Современные представления о строении мембран как подвижных липопротеиновых ансамблей были сформулированы в начале 70-х годов нашего столетня. [c.549]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Строение клеточной мембраны показано на рис. 1.13. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны ад- [c.158]

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]

    Липиды-осн. строит, материал, из к-рого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов. [c.29]

Рис. 12-19. Асимметричность распределения липидов на двух поверхностях липидного бислоя клеточной мембраны. Полярные липидные молекулы могут свободно перемещаться по поверхности каждой из сторон мембраны, однако тот перескок молекул липида с одной стороны мембраны на другую, который показан на схеме, происходит лишь в редких случаях. Рис. 12-19. <a href="/info/1304688">Асимметричность распределения</a> липидов на <a href="/info/1696521">двух</a> поверхностях <a href="/info/179541">липидного бислоя</a> <a href="/info/4417">клеточной мембраны</a>. Полярные <a href="/info/1386865">липидные молекулы</a> могут свободно перемещаться по поверхности каждой из <a href="/info/1388494">сторон мембраны</a>, однако тот перескок молекул липида с одной <a href="/info/1388494">стороны мембраны</a> на другую, который показан на схеме, происходит лишь в редких случаях.
    Прежде чем приступить к изложению основных результатов применения комплексонов в медицине, необходимо кратко охарактеризовать ряд таких сугубо специфических свойств комплексонатов, как способность брать на себя функции биокатализаторов, проникать сквозь клеточные мембраны, подвергаться метаболизму, растворяться в липидах и т. п. [c.492]

    Лизолецитин образуется из лецитина путем отщепления одного из остатков жирной кислоты при действии фосфолипаз Ai или Аг. Мы уже упоминали в гл. 2, что лизолецитин является промежуточным соединением при образовании и распаде липидов, что он очень быстро реацилируется и, вероятно, играет важную роль при поддержании определенного липидного состава мембраны. Лизолецитин не должен накапливаться в клетке, так как он заметно разрушает бислойную структуру клеточной мембраны. Схематически этот процесс изображен на рис. 3.6. [c.72]

Рис. 7.1. Принципиальная схема организации липопротеиновой клеточной мембраны, показывающая тесную связь между липидами и белками [102 . Рис. 7.1. <a href="/info/1811804">Принципиальная схема организации</a> липопротеиновой <a href="/info/4417">клеточной мембраны</a>, показывающая тесную <a href="/info/1536807">связь между липидами</a> и белками [102 .
    Имеются многочисленные доказательства того, что основной функцией сфинголипидов является их участие в передаче сигналов с наружной поверхности клетки в ее внутреннее пространство. Структура этих молекул и их локализация отвечают этой функции сфинголипиды состоят из липофильной (церамид) и гидрофильной (углеводной) частей (рис. 2.12). Это позволяет им с помощью церамида прочно закрепляться в липидной фазе клеточной мембраны и вместе с тем взаимодействовать с окружающей полярной средой. Молекулы сфинголипидов ориентированы исключительно наружу, и со стороны цитоплазмы мембрана, по-видимому, не содержит их углеводных остатков. Разнообразие углеводных частей сфинголипидов делает эти липиды носителями специфичности и информации. [c.45]

    Существуют различные теории, объясняющие механизм поступления питательных веществ в клетку. Так, Джонсон предполагает [167], что проникновение углеводородов в клетку происходит при участии липидов клеточной оболочки и длинная парафиновая цепь углеводородной молекулы становится частью фосфолипидной мицеллы клеточной мембраны. Это объяснение является весьма общим. Имеется предположение о том, что первоначальное окисление парафина протекает вне клетки [1681. В этом случае некоторые ферменты должны были бы выделяться клеткой в среду. Многие авторы с этим не соглашаются [169]. Все больше и больше фактов свидетельствуют о том, что фермент для [c.84]


    Фотодинамический эффект обнаружен у всех живых организмов. У прокариот в результате фотодинамического действия индуцируются повреждения многих типов утрата способности формировать колонии, повреждение ДНК, белков, клеточной мембраны. Причина повреждений — фотоокисление некоторых аминокислот (метионина, гистидина, триптофана и др.), нуклеозидов, липидов, полисахаридов и других клеточных компонентов. [c.333]

    Клеточная мембрана — неотъемлемый элемент любой клетки. Ее роль в первую очередь состоит в том, чтобы отгородить содержимое клетки от окружающей среды, сосредоточить в небольшом объеме простран,ства все необходимые информационные и функциональные структуры, а у клеток эукариот, кроме того, разделить внутреннюю часть клетки на различные функционально автономные отсеки-ядро, митохондрии и ряд других. Во внешней плазматической мембране клетки функционируют транспортные белки, рецепторы и связанные с ними белковые системы преобразования полученных сигналов. Но структурную основу мембран составляют липиды. [c.55]

Рис. 73. Разрез бимолекулярного слоя липидов клеточной мембраны Рис. 73. Разрез <a href="/info/1378949">бимолекулярного слоя</a> <a href="/info/100383">липидов клеточной</a> мембраны
    Из-за низкой растворимости в липидах водорастворимые гормоны не проходят через клеточную мембрану. Вместо этого они связываются с рецептором на поверхности клетки. В случае адреналина такой рецептор представляет собой фермент, катализирующий образование внутри клетки второго посредника-циклического АМР(сАМР). Наоборот, жирорастворимые гормоны легко могут проникать через гидрофобную внутреннюю часть клеточной мембраны. Оказавшись внутри клетки, они могут воз- [c.999]

    Рассмотрение липидов в этой главе уместно и еще по одной причине. Дело в том, что наряду с неполярными липидами существуют также полярные липиды. Они составляют главные компоненты клеточных мембран, т.е. тех контейнеров , в которых протекают основные метаболические процессы. Мембраны не только отделяют содержимое клеток от окружающей среды, но и обеспечивают пространственное разделение метаболических процессов внутри клеток. Вместе с тем мембраны-это не просто клеточный покров в них локализованы многочисленные ферменты и транспортные системы. Более того, на внешней поверхности клеточной мембраны располагаются разнообразные распознающие, или рецепторные, участки, которые способствуют узнаванию других клеток, связывают определенные гормоны и воспринимают иные сигналы из внешнего окружения. Многие свойства клеточных мембран обусловлены наличием в них полярных липидов. [c.325]

    Полярные липиды встраиваются в клеточные мембраны. ... [c.730]

    Гормоны коры надпочечников растворяются в липидах и легко проходят через клеточные мембраны тканей-мишеней в цитоплазму, где они соединяются со специфическими внутриклеточными белками-рецепторами. Образовавшиеся гор-мон-рецепторные комплексы, которые можно рассматривать в качестве внутри- [c.802]

    Липиды—это сложные эфиры глицерина или сфингозина (длинноцепочечного аминоспирта) и жирных кислот (предельных и непредельный), содержащих в основном углеводородные радикалы —С18. Большинство лигшдов имеют в молекуле две такие гидрофобные цепи. Полярные части могут включать различные химические группы эфирвые (моно-, ди- и триглицериды), остатки фосфорной кислоты (фосфолипиды), а также углеводные остатки (в большой группе гликолипидов). На рис. П-ЗО приведены структурные формулы некоторых наиболее распространенных липидов различных классов. В организме липиды, как правило, вместе с белками являются основной составляющей таких биоструктур, как клеточные мембраны. [c.96]

    Схема мозаичной модели клеточной мембраны 1 - полярная головка молекулы липнла, 2-углеводородная цепь молекулы липида, 3 - интегральный белок [c.29]

Рис. 24-22. Координированность переноса кислорода и СО2 эритроцитами. А. В легких в результате оксигенации гемоглобина происходит высвобождение ионов которые далее присоединяются к ионам НСО 3 с образованием Н2СО3. Под действием карбоангидразы Н2СО3 подвергается дегидратации, в результате чего образуется растворенная СО2, которая диффундирует в плазму крови, а из нее-в воздушное пространство легких и выдыхается. Б. Захват эритроцитами растворенной СО2 в периферических тканях требует участия карбоангидразы, катализирующей гидратирование СО 2 с образованием НзСОэ далее Н2СО3 теряет ион Н и превращается в НСО 3. Высвобождаемые при этом ионы И смещают равновесие реакции гемоглобина с кислородом в направлении отщепления кислорода и его передачи ткани. Поскольку О2 и СО2 растворимы в липидах, они легко проходят через клеточные мембраны, не нуждаясь в системах мембранного транспорта. Однако обмен между ионами СГ и НСО 3, осуществляемый через мембрану эритроцитов, протекает только при помощи систем, обеспечивающих транспорт анионов. Рис. 24-22. <a href="/info/1676512">Координированность переноса</a> кислорода и СО2 эритроцитами. А. В легких в результате <a href="/info/1388212">оксигенации гемоглобина</a> происходит высвобождение ионов которые далее присоединяются к ионам НСО 3 с образованием Н2СО3. Под <a href="/info/1038254">действием карбоангидразы</a> Н2СО3 подвергается дегидратации, в результате чего <a href="/info/888068">образуется растворенная</a> СО2, которая диффундирует в <a href="/info/91035">плазму крови</a>, а из нее-в воздушное пространство легких и выдыхается. Б. Захват эритроцитами растворенной СО2 в периферических тканях требует участия карбоангидразы, катализирующей гидратирование СО 2 с образованием НзСОэ далее Н2СО3 теряет ион Н и превращается в НСО 3. Высвобождаемые при этом ионы И <a href="/info/1754528">смещают равновесие реакции</a> гемоглобина с кислородом в <a href="/info/313626">направлении отщепления</a> кислорода и его <a href="/info/188180">передачи ткани</a>. Поскольку О2 и СО2 растворимы в липидах, они легко проходят <a href="/info/1413654">через клеточные мембраны</a>, не нуждаясь в <a href="/info/1405147">системах мембранного</a> транспорта. Однако <a href="/info/2599">обмен между ионами</a> СГ и НСО 3, осуществляемый <a href="/info/152902">через мембрану</a> эритроцитов, протекает только при помощи систем, обеспечивающих транспорт анионов.
    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]

    Напомним, что плазменные липопротеины —это сложные комплексные соединения, в состав которых, кроме белка, входит липидный компонент. Плазменные липопротеины имеют характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, этерифицированный холестерин). Жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина этой оболочки составляет 2,0—2,5 нм, что соответствует половине толщины фосфолипидного бислоя клеточной мембраны. [c.405]

    Многочисленные патологические состояния живых организмов, обусловленные гипоксией различной этиологии, токсическими воздействиями, воспалительными процессами и др., связаны с повреждением клеточной мембраны. Одним из механизмов повреждения клеток является свободнорадикальное окисление липидов их мембран. Поэтому вещества, обладающие антиоксидантной и мембраностабилизирующей активностью, к которым относятся и многие фенилпропаноиды, могут препятствовать ряду патологических состояний. [c.53]

    Клеточная мембрана и сеть эндоплазматических мембран являются существенным элементом каждой живой клетки. Они не только отграничивают друг от друга клетки и их структурные элементы, но и обеспечивают активный транспорт низкомолекулярных веществ. Основной биологической функцией эндоплазматической сети и связанного с ней образования — так называемого аппарата Гольджи является, по-видимому, синтез основных биополимеров клетки и их транспортировка в нужные участки клетки . В участках так называемой шероховатой сети с эндоплазматическими мембранами связаны рибонуклеопротеидные частицы — рибосомы, в которых происходит синтез белка. В гладких участках эндоплазматической сети происходит биосинтез полисахаридов и липидов. [c.600]

    Электронномикроскопические исследования показывают, что в основе клеточных и внутриклеточных мембран лежит структура единичной мембраны толщиной 75—95 А, состоящая из двух слоев липида и двух слоев нелипидного материала . В настоящее время имеются данные, указывающие на присутствие углеводсодержащих биополимеров во внешнем слое клеточной мембраны . При биохимическом исследовании субклеточных частиц из клеток печени крыс было обнаружено высокое содержание гексозаминов и сиаловых кислот — специфических компонентов смешанных углеводсодержащих биополимеров во фракции гладких микро-сом , возникающих из гладкой эндоплазматической сети . Экспериментально доказано присутствие гликолипидов в клеточной мембране Mi ro o us lysodeikti us и других грамположительных бактерий . [c.600]

    Функции ЦПМ прокариот. ЦПМ прокариот выполняет разнообразные функции, в основном обеспечиваемые локализованными в ней соответствующими ферментными белками. Первоначально была постулирована барьерная функция клеточной мембраны, получившая позднее экспериментальное подтверждение. С помощью специальных переносчиков, называемых транслоказами, через мембрану осуществляется избирательный перенос различных органических и неорганических молекул и ионов. В ней локализованы ферменты, катализирующие конечные этапы синтеза мембранных липидов, компонентов клеточной стенки и некоторых других веществ. [c.49]

    Фторсодержащие гетероциюты привлекают внимание химиков и биологов, так как многие производные обладают выраженным биологическим эффектом. Введение атома фтора в гетероциклические соединения повышает их растворимость в липидах, а также способность проникать через клеточные мембраны. Продолжая исследования фторированных азот- и серусодержащих гетероциклов [1, 2], мы осуществили синтез фторированных производных бензофуроксана и исследовали химические трансформации последних под действием нуклеофилов. [c.119]

    Каждая живая клетка окружена мембраной, которая обеспечивает внутрн клетки необходимый микроклимат , играет активную роль в поддержании ее жизнедеятельности, контролирует потоки веществ и ионов в клетку и из нее. Клеточная мембрана — сложная высокоорганизованная двумерная система, состоящая главным образом из липидов и белков. [c.548]

    Трехслойная структура наблюдалась на фиксированных срезах многих биологических мембран. Основываясь на этом морфологическом сходстве, Дж. Д. Робертсон в 1959 г. предположил, что все клеточные мембраны — как плазматические, так и внутриклеточные — построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны. В целом модель, предложенная Дж. Д. Робертсоном в 1960 г. (рис. 314), во многом сходна с классической моделью Дж. Даниелли основу мембраны составляет липидный бислой, а ее нелипидные компоненты (прежде всего бе.юк) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами электростатически и за счет гидрофобных взаимодействий. Однако в модели Робертсона нашла отражение еще одна важная структурная особенность мембраны — ее асимметрия. [c.582]

    Трудно говорить об образовании мембран de novo, поскольку существование клетки предполагает существование ее мембран. Одиако можно считать установленным, что процесс формирования клеточной мембраны идет непрерывно, путем введения в иее новых составных частей, обновления компонентов, прежде всего липидов, белков и т. п. В частности, полупериод жизни мембранных компонентов клеток печени, в течение которого обновляется половина их исходного содержания, составляет для белков микросом, ядерной мембраны и цитоплазматической мембраны 2—3 дня, белков внешней митохондриальной мембраны — 5—6 дней, внутренней митохондриальной мембраны — 8—10 дней, для липидов микросом — [c.586]

    Если молекула кислорода приобретает дополнительный (экстра-) электрон, то образуются свободные кислородные радикалы супероксидный (О2), гидроксильный (НО) и синглетный кислород Ог) Эти радикалы — потенциальные деструкторы липидов, белков, нуклеиновых кислот В частности, к ним чувствительны клеточные мембраны, в которых первичной мишенью выступают липиды, протоны которых взаимодействуют с.радикалами и наступает так называемая "липидная пероксидация" с образованием пероксидов Свободнорадикальное повреждение мембраны схематично представлено на рис 78 [c.262]

    Для клетки очень важно, чтобы молекула кислорода, присоединив четыре электрона, полностью восстановилась до двух молекул Н2О. При неполном восстановлении кислорода в случае присоединения только двух электронов образуется перекись водорода (Н Ог), а в случае присоединения одного электрона-супероксмдный радикал ( 0 ). И перекись водорода, и супероксид крайне токсичны для клеток, потому что они повреждают клеточные мембраны, взаимодействуя с остатками ненасыщенных жирных кислот мембранных липидов. Аэробные клетки защищают себя от этого вредного действия супероксида и перекиси с помощью двух ферментов супер-оксиддисмутазы (металлсодержащего фермента, превращающего суперок-сидный радикал в перекись водорода) и каталазы (превращающей перекись водорода в Н2О и молекулярный кислород) [c.522]

    Повреждение поверхностных структур или слоев клетки. Этанол в достаточно высокой концентрации (70%) вызывает коагуляцию белков и оказывает бактерицидное действие. Фенолы, крезолы, нейтральные мыла и поверхностно-активные вещества (детергенты) действуют на наружные слои клеток и нарушают избирательную проницаемость плазматической мембраны. Клеточные мембраны состоят главным образом из липидов и белков. Детергенты имеют поляркую структуру, причем их молекулы содержат как липофильные группы (длинные углеводородные цепи или ароматические кольца), так и гидрофильные ионизированные группы. Накапливаясь в липопротеиновых мембранах (тоже имеющих полярную структуру), детергенты нарушают их функции. Поскольку эти вещества обладают широким спектром антимикробного действия, их обычно применяют для дезинфекции различных поверхностей и одежды. С детергентами сходны по своему действию некоторые полипептидные антибиотики (полимиксин, колистин, бацитрацин, субти-лин) и антимикробные вещества растительного происхождения. [c.204]


Смотреть страницы где упоминается термин Клеточные мембраны. Липиды: [c.159]    [c.43]    [c.593]    [c.88]    [c.156]    [c.156]    [c.419]    [c.424]    [c.581]    [c.65]    [c.87]    [c.269]    [c.642]    [c.244]   
Смотреть главы в:

Биологическая химия -> Клеточные мембраны. Липиды




ПОИСК





Смотрите так же термины и статьи:

Липиды

Мембрана клеточная



© 2025 chem21.info Реклама на сайте