Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линии клеток

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]


    Вам нужно клонировать и экспрессировать фрагмент ДНК, кодирующий интерферон человека. У вас нет нужного ДНК-зонда для гибридизации, но вам удалось выделить линию клеток человека, в которых можно индуцировать синтез интерферона с интенсивностью, превышающей фоновую примерно в 100 раз. Какую стратегию клонирования и экспрессии этой ДНК вы выберете  [c.226]

    Если патогенные микроорганизмы не растут в культуре, можно изолировать, клонировать и экспрессировать в альтернативном хозяине (например, в Е. соИ или линии клеток млекопитающих) гены тех белков, которые содержат основные антигенные детерминанты, и [c.228]

    Клеточная линия — возникает из первичной культуры при первом удачном субкультивировании название "клеточная линия" относится к таким культурам, которые включают линии клеток, изначально присутствующих в первичной культуре. Если известен статус культуры, то используют термины "прерывная" или "непрерывная" культура. Если же статус неизвестен, то достаточен термин "линия". [c.494]

    Теперь имеются линии клеток, которые сохраняются в течение ряда лет без потери способности выделять Ig. Но есть и короткоживущие линии у таких мышиных линий обычно вначале исчезает тяжелая цепь Ig (утрата 12-й хромосомы), а затем — легкая цепь Ig (потеря 6-й хромосомы). [c.571]

    Традиционные способы использования микроорганизмов при производстве различных сортов пива, вина и сброженных продуктов совершенствовались тысячелетиями, и все же до недавнего времени в них было больше искусства, чем технологии. Только с развитием микробиологии мы получили возможность контролировать качество продуктов, добились большей надежности и воспроизводимости процессов ферментации и научились получать новые типы продукции (например, БОО и вкусовые добавки). Сегодня нам еще трудно с уверенностью говорить о том, каких успехов удастся достичь в этой области с помощью биотехнологии, но самые общие тенденции вырисовываются довольно ясно. Наиболее успешными представляются два взаимосвязанных направления. Во-первых, на смену традиционным способам производства пищи постепенно придут биореакторы, в которых будут расти клетки животных или растений или же микроорганизмы. Дело в том, что выход продукции при использовании ферментеров или биореакторов может быть существенно выше, чем в сельском хозяйстве идущие в них процессы гораздо более интенсивны. Развитию этого направления способствует и все возрастающая конкуренция за имеющиеся земельные ресурсы. Во-вторых, эта альтернативная технология будет становиться все более производительной благодаря использованию методов генетической инженерии, которые позволяют получать улучшенные линии клеток и штаммы микроорганизмов. [c.23]


    Использование таких приемов отбора позволило получить гибриды не только путем слияния линий клеток одного вида, о и межродовые гибриды клеток человека с клетками мыши м крысы. Эти линии клеток грызунов/человека нестабильны, тричем легче они теряют хромосомы человека, так что после тридцати делений в процессе выращивания у них остается всего семь из 24 хромосом человека, изначально присутствовавших в гибридной клетке. Этот процесс элиминации хромосом был Применен при картировании генома человека, поскольку таким путем удается быстро локализовать определенные гены на хромосомах. [c.313]

    Один из результатов использования метода слияния клеток млекопитающих чрезвычайно быстро нашел применение в биотехнологии это линии клеток, полученных при гибридизации с участием клеток миеломы (так называемые гибридомы ), с помощью которых могут вырабатываться моноклональные антитела. Этот метод, разработанный в Кембридже Мильштейном и его сотр., основан на создании бессмертных клеток, производящих антитела, за счет слияния их с клетками миеломы. [c.313]

    У клеток нормальных тканей число и структура хромосом постоянны или мало изменчивы, тогда как раковые клетки отличаются большей изменчивостью. С генетической точки зрения это означает, что раковые опухоли представляют собой гетерогенные популяции клеток. Каждая опухоль имеет свою определенную, преобладающую стволовую линию клеток с характерными для нее числом и структурой хромосом. Примером служат хромосомы из саркоматозной клетки крысы, представленные на фиг. 202. Для сравнения на этой фигуре изображен также нормальный хромосомный набор крысы. У нормальных хромосом отчетливо видны характерные различия, позволяющие выявить гомологичные пары. В саркоматозной клетке эта гомология между парами хромосом завуалирована структурной перестройкой, а число хромосом уменьшилось с 42 до 40. Две большие У-образные хромосомы раковой клетки, отсутствующие в нормальных клетках крысы, служат примерами подобных крупных структурных изменений. [c.444]

    До тех пор пока условия среды раковой опухоли постоянны, популяция ее клеток находится в сбалансированном состоянии и стволовая линия клеток остается константной. Любое изменение условий среды вызывает селективное изменение равновесия, другие компоненты клеточной популяции начинают преобладать и постепенно образуют новые стволовые линии. Эта способность популяции раковых клеток адаптироваться является камнем преткновения химиотерапии. Даже в тех случаях, когда какое-нибудь вещество эффективно подавляет некоторые или даже большинство типов клеток в раковой опухоли, какие-то устойчивые клетки выживают и рост опухоли продолжается. [c.444]

Фиг. 202. Кариотип нормальной ткани мыши (>1) и стволовой линии клеток саркомы Иосида (6). Фиг. 202. <a href="/info/1354753">Кариотип нормальной</a> ткани мыши (>1) и <a href="/info/700778">стволовой линии</a> клеток саркомы Иосида (6).
    Стволовая линия клеток — генетически однородный тип клеток, который при постоянных окружающих условиях характерен для данной опухоли. Помимо клеток стволовой линии, опухоль содержит и другие типы клеток, которые могут развиваться в новые стволовые линии, если окружающие условия изменятся. [c.464]

    После пересадки бластоцист, полученных из клеток молочной железы и уха, соответственно 100 % (2/2) и 42 % (5/12) исследованных реципиентов были беременны на 42-й день. Во время публикации два реципиента имели беременность более 4 месяцев (клетки молочной железы) и пять реципиентов — от 1,5 до 3 месяцев (клетки из уха) (табл. 5.5). Результаты показывают, что взрослые клетки крупного рогатого скота могут быть успешно использованы для пересадки ядер, но клеточные линии, используемые в этих исследованиях, отличаются по потенциальным возможностям и развитию. Различия в способности быть программированными, наблюдаемые с этими двумя линиями клеток могут быть из-за их импринтинга (отпечатка) или модификации хроматина. [c.221]

    После облучения в атмосфере азота ELT-линия клеток, обладающих более медленным ростом, оказалась устойчивее к тормозящему действию радиации, чем ELD-линия. Дозы облучения, препятствующие какому-либо нарастанию числа клеток сверх инокулированной величины, составляли соответственно для каждой линии 4000 и 2000 р. Однако совершенно иные результаты были получены после облучения в атмосфере кислорода. Разница в чувствительности, наблюдаемая при облучении в атмосфере азота диплоидной и тетраплоидной линий клеток, в таком случае исчезала. Кривые роста, полученные при данной дозе облучения в атмосфере кислорода, были одинаковыми для обеих клеточных линий, и в обеих линиях не наблюдалось увеличения числа клеток при дозе облучения, равной 900 р. Выражая полученные данные несколько по-иному, мы можем сказать, что коэффициент кислородного усиления для линии ELD приблизительно равен 2,2, а для клеток ELT-ли-нии около 4,4. [c.166]


    Таким образом, мы не выявили ожидаемого увеличения цитотоксичности эпибетулиновой кислоты в отношении клеток меланомы человека М8 по сравнению с цито-токсической активностью бетулиновой кислоты. Однако спектр биологической активности эпимера несколько изменился по сравнению с активностью кислоты, так выявлена 1Щтотоксичсская активность вещества по отношению к линии клеток меланомы Вго, которые не чувствительны к бетулиновой кислоте. [c.182]

    Другая важная задача — выведение трансгенных животных, устойчивых к заболеваниям. Потери в животноводстве, вызванные различными болезнями, достаточно велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемых микроорганизмами, вирусами, паразитами и токсинами. Пока результаты селекщш на устойчивость животных к различным заболеваниям невелики, но обнаде-живающи. В частности, созданы популяции крупного рогатого скота с примесью крови зебу, устойчивые к некоторым кровепаразитарным заболеваниям. Установлено, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. Вторжению возбудителей, равно как и их размножению, препятствуют в основном иммунная система организма и экспрессия генов главного комплекса гистосовместимости. Одним из примеров гена резистентности у мышей служит ген Мх. Этот ген, обнаруженный в модифицированной форме у всех видов млекопитающих, вырабатывает у Мх -мышей иммунитет к вирусу гриппа А. Ген Мх был вьщелен, клонирован и использован для получения трансгенных свиней, экспрессирующих ген Мх на уровне РНК. Однако данные о трансляции Мх-протеина, обусловливающего устойчивость трансгенных свиней к вирусу гриппа А, пока не получены. Ведутся исследования в целях получения трансгенных животных, резистентных к маститу за счет повышения содержания белка лакто-ферина в тканях молочной железы. На культуре клеток из почек трансгенных кроликов было показано, что клеточные линии, содержащие трансгенную антисмысловую РНК, имели резистентность против аденовируса Н5 (Ads) более высокую на 90 — 98% по сравнению с контрольными линиями клеток. Л. К. Эрнст продемонстрировал также устойчивость трансгенных животных с геном антисмысловой РНК к лейкозу крупного рогатого скота, к заражению вирусом лейкоза. [c.130]

    Трансгенные животные как продуценты ценных биологически активных белков и гормонов имеют ряд преимуществ перед микроорганизмами и клеточными системами. Важно, что новые белки, получаемые в линиях клеток трансгенных животных, могут бьггь модифицированы, их активность сравнима с активностью протеинов. Для молочного производства представляет большой рштерес получение целенаправленной трансгенной экспрессии в эпителиальные клетки молочной железы с целью выхода белков с молоком. Один из основных этапов получения трансгенных животных, продуцирующих гетерогенный белок с молоком, — идентификация промотора, направляющего экспрессию структурных генов в секреторный эпителий молочной железы. [c.131]

    Важным достижением в этой области оказалась разработка метода культивирования фибробластов эмбриона с целью проведения внутриутробной (пренатальной) диагностики наследственных нарушений метаболизма (дополнение 1-Г). Легче всего удается культивировать эмбриональные или раковые клетки, но в определенных условиях можно получить культуры многих других тканей. Следует иметь в виду, что клетки, которые лучше всего растут, не вполне нормальны например, широкоизвестная линия клеток HeLa (клеток рака человека, которых выращивают уже много лет в лабораториях всего мира) содержит 70—80 хромосом вместо обычных 46. [c.55]

    Как удалось установить на некоторых белках, слияние генов имело исключительно важное значение в процессе эволюции. Такого рода документация возможна потому, что составной ген в отличие от случая У-С-гена может оказаться и в линии клеток зародыша. Подобные случаи обнаружены при исследовании путей синтеза аминокислот и синтеза жирных кислот. Классическим примером одной полипептидной цепи, выполняющей две ферментативные функции, является аспартокиназа I — гомосериновая дегидрогеназа Е. соИ [578]. Сравнительное изучение ферментов, участвующих в синтезе Тгр, выявило большое разнообразие в размещении по полипептидной цепи нескольких ферментативных центров [579], что указывает на возможнссть как слияния, так и расщепления генов. [c.228]

    Следовательно, для практического применения антител в качестве диагностического инструмента или компонентов терапевтических средств необходимо было создать такую линию клеток, которая росла бы в культуре и продуцировала антитела одного типа, обладающие высоким сродством к специфическому антигену-мишени, - моноклональные антитела. Подобная клеточная линия могла бы стать неиссякающим источником идентичных молекул антител. К сожалению, В-лимфоциты (В-клетки), синтезирующие антитела, не могут воспроизводиться в культуре. Решение данной проблемы виделось в создании гибридной клетки. Получив генетическую составляющую от В-клетки, она могла бы вырабатывать антитела, а приобретя способность к делению от клетки совместимого типа — расти в культуре. Было известно, что В-лимфоциты иногда перерождаются и становятся раковыми (миеломными) клетками, приобретая спо- [c.184]

    Имеются многочисленные наблюдения (хотя и не складывающиеся пока в полную картину), что глиальные клетки — это не только просто цемент , т. е. скрепляющая ткань, но эти клетки играют также важную активную роль. Возможно, они контролируют внеклеточное окружение нейрона и непосредственно влияют на интеграцию групп нейронов. Кроме того, они могут снабжать нервную клетку важными веществами, метаболитами и факторами питания. Более подробно роль глиальных клеток, в частности на примере онтогенеза, мы рассмотрим в гл. И, где увидим, что по крайней мере в клеточной культуре эти не нервные клетки ганглия влияют на экспрессию синтеза медиатора. Вот еще один пример. В клеточных культурах линия клеток нейробластомы проявляет способность к образованию выростов нейритов (аксонов нервной клетки), но не функциональных синапсов, тогда как линии гибридов нейробластомы и глиомы образуют синапсы, что является еще одним доказательством важной дополнительной функции глиальных клеток. Периферические глиальные клетки (шванновские клетки) участвуют в восстановлении поврежденных нервов. Было даже показано, что после денервации щванновская клетка может заменять дегенерированное нервное окончание в мыщце и даже выделять медиатор. [c.31]

    Заслуживает внимания еще особенно полезная клеточная-линия — линия клеток РС 12, клонированная из феохромоцитомы — опухоли хромаффинной ткани надпочечника. Клетки РС 12 аналогичны хромаффинным клеткам по их способности синтезировать, запасать и высвобождать катехоламины. Подобно не нейрональным клеткам, они размножаются, но под действием N0 они перестают делиться, участвуют в нейритных процессах и становятся очень похожими на симпатические нейроны. Они приобретают электрическую возбудимость, отвечают на ацетилхолин и даже образуют функциональные холинэргические синапсы. Клетки РС 12 используются в качестве модельных систем для изучения дифференциации нейронов, действия гормональных и трофических факторов, функции и метаболизма гормонального рецептора (см. с. 325). [c.369]

    Прогресс в получении клеточных линий насекомых был последовательно обеспечен трудами В. Трагера в конце 30-х годов текущего столетия, С. Вьятта (1956), Т. Д. С. Грейса (1962). Грейс модифицировал среду Вьятта, включавшую 21 аминокислоту, пять солей, три сахара, три органические кислоты (pH=6,3—6,5), добавив в нее 9 витаминов комплекса В. В результате ему удалось изолировать 4 культуры, ставшие стабильными линиями клеток [c.555]

    Поскольку у всех видов живых организмов макромолекулы образуются одним и тем же способом всего лищь из нескольких десятков молекул, играющих роль строительных блоков, было высказано предположение, что все живые организмы произошли от одной первичной линии клеток. Согласно этому предположению, первые возникшие на Земле и выжившие клетки бьши построены всего из нескольких десятков различных органических молекул, причем каждая из них в отдельности и все они вместе взятые оказались наделенными химическими и физическими свойствами в таком благоприятном сочетании, что это позволило им функционировать в качестве строительных блоков макромолекул и осуществлять столь важные для живых клеток процессы, как преобразование энергии и самовоспроизведение. Такой набор первичных биомолекул, вероятно, сохранялся в ходе биологической эволюции в течение миллиардов лет вследствие его уникальной пригодности для реализации процессов жизнедеятельности. [c.72]

    Определяющую роль в развитии генетики клеток растений ш млекопитающих должно сыграть внедрение метода слияния клеток. Уже сегодня важные средства диагностики моноклональные антитела — получают с помощью линий клеток-гибри-дом возможно, они внесут свой вклад и в развитие терапии. Обычным способом скрещивания у видов Streptomy es стало слияние протопластов, но при работе с грибами этот метод имеет пока второстепенное значение. Открытие межъядерного переноса генов у грибов позволит более сознательно использовать метод слияния протопластов. Есть основания считать, что генетическая инженерия привнесет важные изменения в медицину и сельское хозяйство, и в немалой степени потому, что технология рекомбинантных ДНК позволит нам глубже помять главные молекулярно-биологические особенности клеток растений и животных. Этот подход уже позволяет получать ин- формацию о процессах, лежащих в основе таких сложных для лечения болезней, как малярия и болезнь Чагаса. [c.323]

    Томас и др. (Thomas et al., 1979) перечисляет ряд работ, в которых была осуществлена регенерация в экспериментах по слиянию протопластов растений, принадлежащих к одному и тому же (7 случаев) и разным (14 случаев) видам. В четырех экспериментах по межвидовому слиянию были получены линии клеток, а в четырех других — осуществлен захват клеточных [c.389]

    Стволовые линии клеток раковых опухолей обычно полиплоидны или анеуплоидны. Они могут варьировать от гиподи-плоидных до гипертетраплоидных, т, е. от менее чем диплоид-чого числа хромосом до более чем тетраплоидного для дан- [c.444]

    Как известно, перевиваемая линия клеток ВНК-21 характеризуется псевдодиплпияным набором хромосом (рис. 2.51). Был [c.183]

    Недавно начато культивирование тканей насекомых. Однако раньше никогда не удавалось заражать линии клеток культуры тканей насекомых вирусами, образующими тела-щклрчения к вщрусной инфe кции были вос- [c.311]

    Однако два новых открытия были столь фундаментальными, что о них следует упомянуть и здесь. Оба они могут помочь объяснить, почему алкилирующие вещества могут быть только паллиативами при лечении лейкемии и некоторых других новообразований, против которых они сначала бывают эффективными. Как указано в обзоре Молони [59], такие соединения, как цитоксан и третамин, которые вызывают ремиссию злокачественных опухолей, почти не оказывают или вовсе не оказывают влияния на опухолевые вирусы [32]. Во-вторых, Краторн и Робертс [16], пытаясь объяснить, почему две линии клеток, отличающиеся в 2,5 раза по своей чувствительности к газообразному иприту, выдвинули гипотезу о [c.245]

    Т.И. Тихоненко была создана конструкция гена антисмысловой РНК против аденовируса и в Биотехцентре (М.И. Прокофьев) получены трансгенные кролики. На культуре клеток из почек этих животных было показано, что клеточные линии, содержащие трансгенную антисмысловую РНК, имели на 90—98 % более высокую резистентность против Ads по сравнению с контрольными линиями клеток. [c.235]


Смотреть страницы где упоминается термин Линии клеток: [c.254]    [c.144]    [c.207]    [c.490]    [c.254]    [c.289]    [c.185]    [c.539]    [c.350]    [c.137]    [c.446]    [c.199]    [c.234]    [c.237]    [c.222]    [c.241]    [c.167]    [c.168]   
Методы исследований в иммунологии (1981) -- [ c.101 , c.384 , c.386 , c.388 ]

Гены и геномы Т 2 (1998) -- [ c.367 ]




ПОИСК







© 2025 chem21.info Реклама на сайте