Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез видимый

    ЛИШЬ при действии довольно жесткого ультрафиолетового излучения с длиной волны меньше 300 нм. Наоборот, вещества, которые могут поглощать световую энергию, окрашены. Например, хлорофилл— сложная органическая молекула, ответственная за поглощение света при фотосинтезе, имеет ярко-зеленую окраску, что соответствует поглощению света в видимой области. На рис. 1.07 представлен спектр поглощения хлорофилла. [c.369]


    Не менее важной заслугой Тимирязева является открытие роли хлорофилла как сенсибилизатора фотохимических реакций, происходящих при фотосинтезе. Он экспериментально установил, что фотосинтез осуществляется преимущественно п красных и синих лучах видимого спектра. Тимирязев провел следующий опыт. Ряд стеклянных трубочек, наполненных смесью воздуха и диоксида углерода и содержащих по одному одинаковому зеленому листу, был выставлен на разложенный с помощью трехгранной призмы солнечный свет так, что в каждой части солнечного спектра находилась одна трубочка. Через каждые несколько часов определялось содержание диоксида углерода в трубочках. Оказалось, усвоение СО2 происходит только в тех лучах, которые поглощаются хлорофиллом, т. е. в красных, оранжевых и желтых частях спектра. Некоторые результаты опыта представлены на ркс. 49 в виде графика, на котором по оси ординат отложены количества поглощенной СО2 в каждой из трубочек. [c.176]

    Для абиогенного синтеза органических веществ в основном требовался ультрафиолет. Все известные в настоящее время фотосинтезирующие организмы используют в процессе фотосинтеза видимый и инфракрасный свет. Наиболее богатые энергией ультрафиолетовые лучи в фотосинтезе практически не используются (см. рис. 35). Это связано с фотохимическими эффектами разных частей спектра, рассмотренными ранее. [c.263]

    Эта энергия активации эквивалентна излучению с длиной волны 230 нм или менее Такого коротковолнового излучения в солнечном свете, который достигает земной поверхности, не существует. Однако хлорофилл действует как фотосенсибилизатор, поглощая видимый свет и делая его пригодным для фотосинтеза в растениях. Но в этой реакции имеется нечто специфичное. Красный свет вызовет реакцию, но красному свету соответствует только 40 ккал/моль, а для того, чтобы вызвать реакцию, требуется более 112 ккал/моль. По-видимому, реакция протекает по стадиям. Лабораторные эксперименты с альгой (водоросль) показали, что обычно требуется около восьми фотонов на каждую использованную молекулу двуокиси углерода и каждую молекулу кислорода, вовлеченную при благоприятных условиях в фотосинтез с низкой интенсивностью света., Упражнение 18.1. Показать, что, если при фотосинтезе восемь фотонов поглощенного света с длиной волны 600 нм дают одну молекулу продукта реакции, который имеет теплоту сгорания 112 ккал/моль, эффективность превращения поглощенного света в аккумулированную химическую энергию составляет 30%. [c.557]


    Детали синтеза углеводов и механизмов фотофосфорилирования лежат за пределами настояш,ей книги. Однако мы остановимся здесь на роли в этих процессах пигментов, поскольку они имеют фундаментальное значение в улавливании и утилизации энергии света. Светособирающая роль хлорофилла в фотосинтезе— вероятно, наиболее яркий пример специфических биологических фотофункций природного пигмента. Функционирование каротиноидов и фикобилинов в качестве вспомогательных пигментов также прямо связано с их светопоглощающими свойствами. Другие окрашенные молекулы, в том числе цитохромы и флавопротеины, участвуют в фотосинтезе как часть электронтранспортных систем способность этих соединений поглощать видимый свет не имеет отношения к их функционированию. Ниже будут освещены вопросы о том, как поглощающие свет пигменты расположены в фотосинтетическом аппара- [c.328]

    Область использования явления радиоактивности в химии настолько велика, что здесь мы сможем привести лишь несколько примеров. По-видимому, наиболее характерным из них является применение меченых атомов для исследования химических реакций. Использование этого метода сделало возможным столь важное для химии открытие, как установление механизма участия углерода и фосфора в фотосинтезе подробнее об этом рассказывается в гл. 28. [c.433]

    Видимый свет — это тот диапазон световой энергии, который используется растениями и микроорганизмами в процессе фотосинтеза. С помощью фотосинтеза атмосферная двуокись углерода фиксируется в такой химической форме, которая используется не только самими растениями, но и служит первичным источником пищи для всего живого мира. Различные фоторецепторы регистрируют также вариации в количестве до- [c.9]

    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]

    Наиболее важными среди полисахаридов являются целлюлоза и крахмал. Оба они образуются в растениях из углекислого газа и воды в процессе фотосинтеза и, как оказалось, состоят из звеньев о-(- -)-глюкозы. Целлюлоза — основной строительный материал растения, придающий ему жесткость и форму, и, по-видимому, наиболее распространенное в природе органическое вещество. Крахмал служит запасным пищевым фондом растения и встречается главным образом в семенах. Он растворим в воде лучше, чем целлюлоза, легче гидролизуется и, следовательно, более легко переваривается. [c.972]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Расчет фотосинтеза на единицу листовой площади является обычным в практике работы с высшими растениями. Однако, хотя и СОг и свет воздействуют на лист через его поверхность, не всегда можно согласиться с тем, что именно листовая площадь является наилучшим показателем для выражения скорости фотосинтеза. Видимую скорость ассимиляции расчитывают также на единицу веса белкового азота [327] (который служит [c.106]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]


    Более важной причиной торможения фотосинтеза, видимо, является ингибирование темновой стадии процесса. На это указывает снижение порога светового насыщения фотосинтеза (рис. 26, кривая 3). [c.31]

    Фотохимические реакции. К фотохимическим относятся реакции, обусловливаемые лучистой энергией главным образом видимой части спектра электромагнитного излучения. Например, смесь газон водорода и фтора при ее освещении взрывается бромистое серебро на свету разлагается с выделением металлического серебра, что широко используется в фотографии синтез сложных органических веществ растениями в процессе их жизнедеятельности также имеет фотохимическую основу (фотосинтез) многие краски на солнечном свету блекнут, выцветают и т. д. [c.143]

    На следующей стадии эволюции появились, видимо, организмы, родственные современным фотосинтезирующим бактериям (пурпурным и зеленым) они могли использовать энергию солнечного света. Любопытно, что большинство этих (грамотрицательных) фотосинтезирующих бактерий—строгие анаэробы. В отличие от высших растений ни один из указанных микроорганизмов не выделяет кислорода. Напротив, для. восстановления двуокиси углерода в процессе фотосинтеза им необхо ДИМ водород, который они получают либо путем расщепления неорганических соединений типа H2S, тиосульфата или Нг, либо из органичен ских веществ. [c.25]

    Фотосинтез, уменьшил концентрацию оксида углерода (IV) в атмосфере и обогатил атмосферу кислородом (В. И. Вернадский). Другим источником кислорода были, по-видимому, фотохимические реакции разложения воды в верхних слоях атмосферы, вызванные ультрафиолетовым излучением Солнца. [c.187]

    Известно, какое большое значение имеет реакция фотосинтеза, заключающаяся в восстановлении СО2 до углеводорода за счет энергии, заключенной в фотонах видимого света  [c.189]

    Один из законов фотохимии, установленный Гротгусом в 1818 г., формулируется следующим образом лишь поглощенный свет является фотохимически активным. Отсюда следует, что в системе, проявляющей фотохимическую активность под действием видимого света, должно присутствовать окрашенное вещество. В процессе естественного фотосинтеза таким веществом является хлорофилл. [c.563]

    На первой стадии гидрирования порфирины насыщают водородом одну Ср—Ср-связь и превращаются в хлорины. Для хлоринов в отличие от ЭСП порфиринов с относительно слабым поглощением квантов света в красной части спектра характерна интенсивная полоса в области 660—720 нм. Именно с этим свойством связано то, что хлорофилл (а) зеленых растений является хлорином, а не порфином. Его хлориновая структура обеспечивает предельно сильное поглощение света в красной части видимого спектра и обеспечивает фотосинтез энергией Солнца даже в самых неблагоприятных природных условиях. [c.688]

    Отсюда, в частности, следует, что видимый свет способен вызывать фотохимические превращения только в окрашенных веществах, т. е. веществах, поглощающих свет в видимой части спектра. Так, важнейшие для жизни на Земле процессы фотосинтеза начинаются с поглощения солнечного света зеленым красителем хлорофиллом, содержащимся в растениях (если вещество окрашено в зеленый цвет, это значит, что оно поглощает дополнительный к нему красный свет). Далее развивается весьма сложный процесс, включающий как фотохимические, так и темновые стадии. За счет энергии солнечного света идут чрезвычайно невыгодные термодинамически реакции синтеза сложных органических веществ из диоксида углерода и воды, например синтез глюкозы  [c.161]

    Поскольку при образовании углеродсодержащих продуктов фотосинтеза главным процессом по всей видимости, служит включение СО2 через цикл Кальвина (гл. 11, разд. Г,2), источником восстанавливающих эквивалентов должен быть процесс расщепления, шести молекул Воды с одновременным выделением Од. В противном, случае уравнение (13-25) не будет выполнено. Тем не менее ймеютсц данные, что непосредственным источником кислорода при образовании О2 являются ионы бикарбоната [114]. Более поздние эксперименты показывают, что 0 из бикарбоната не включается в Од, но бикарбонат все же стимулирует выделение кислорода [115], действуя, по всей вероятности, как аллостерический эффектор. [c.51]

    Ранние стадии механизма фотосинтеза включают так называемые световую и темновую реакции. При световой реакции кислород, высвобождаемый в процессе фотосинтеза, по-видимому первоначально принадлежал воде, расщепляемой акцептором (хлорофиллом), который активирован световой энергией (рис. 28.7). Затем водород восстанавливает фермент никотинамидаденинди-нуклеотид (НАД ), в результате чего образуются [c.490]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Представители растительного царства окрашены преимущественно в зеленый цвет. Зеленый цвет, во всем своем разнообразии оттенков, услаждает глаз человека, но можно не сомневаться, что и он стал бы монотонным, если бы зеленый фон не оживлялся всплесками других ярких и контрастных цветов. Ярко окрашенные цветки и плоды невольно притягивают глаз. Однако значение их окраски, по-видимому, не только в этом, но имеет гораздо более фундаментальную основу. Зеленая окраска растений и хлорофилл, который ее обусловливает, играют чрезвычайно важную роль в процессе фотосинтеза, поддерживающего существование любого растения. Значение же контрастирующей окраски цветков и плодов заключается в том, что она облегчает распространение и выживание вида. [c.292]

    Фотосинтез в океане происходит в сравнительно тонком верхнем слое мощностью 2-250 м (в среднем 40 м) — эуфотическом слое — слое жизни. Разные фотосинтезирующие организмы используют различные участки видимого светового спектра, что позволяет фотосинтезирующим бактериям и водорослям обитать на различной глубине водной толщи. [c.118]

    Вместе с тем следует отметить, что способность всех этих соединений поглощать видимый свет не имеет отношения к их функционированию при фотосинтезе, и в первичном поглощении света они не участвуют. [c.346]

    Все живые организмы находятся под воздействием разных видов излучения. Эффекты, вызываемые облучением живых организмов, зависят от длины волны излучения и его дозы, т.е. от энергии и количества поглощенных квантов (рис. 35). Излучение в области длин волн от 300 до 1100 нм, приходящееся в основном на видимый свет, обеспечивает возможность осуществления упорядоченных реакций при поглощении его подходящими для этого системами. В организмах излучение в этом диапазоне индуцирует такие процессы, как фотосинтез, фототаксис, фотореактивацию ДНК, синтез некоторых макромолекул. Для излучений с длиной волны больше 1100 нм к настоящему времени не зарегистрировано каких-либо биологических эффектов. Основное действие ИК-излучения — ускорение движения молекул (нагревание). Действие коротковолнового излучения на организмы приводит к возникновению мутаций или вызывает смертельный (летальный) исход из-за необычайно высокой фотохимической активности этого вида излучения, приводящего к модификации или разрушению поглотивших его органических молекул. [c.130]

    По-видимому, на более поздней стадии эволюции возникло фотосинтетическое восстановление СОа до углеводов. При этом источником Н у прокариот (бактериальный фотосинтез) служат разные молекулы, а у зеленых растений НаО. В окружающую среду выделяется кислород. Его накопление в атмосфере является результатом фотосинтеза. Суммарная реакция  [c.53]

    У hloroflexa eae механизм первичных процессов фотосинтеза, видимо, такой же, как у пурпурных бактерий.-Ярнлг. ред. [c.392]

    Крахмал, Это — основной резервный углевод выснтих растений. Является первым видимым продуктом фотосинтеза. В клетках растений находится в виде зерен, форма и размеры которых специфичны для каждого рода растений (картофеля, пшеницы, риса, овса, ячменя и т. д.). [c.214]

    Рис, 3.1. Что видит человек и что видит зеленое растение Глаз человека воспринимает так называемый видимый свет, под которым понимают свет с длиной волиы от 400 до 700 им максимум светочувствительности приходится иа длину волиы 555 нм, Зеленое растение тоже использует для фотосинтеза видимый свет, по у него максимумы поглощения находятся в снией и красной областях спектра. [c.34]

    Хорошо известно, что О2 ингибирует фотосинтез в большинстве растений. Частично это связано с тем, что О2 прямо конкурирует за СО2 в активном центре рибулозодифосфат-карбоксилазы [169, 170]. В присутствии ингибирующих количеств кислорода в хлоронластах в относительно больших концентрациях образуется гликолевая кислота [171]. Единственной реакцией, приводящей к ее возникновению, является, по-видимому, взаимодействие енолят-иона, образующегося из промежуточного соединения реакции (7-81), с О2  [c.176]

    В прошлом, когда дым являлся главным загрязнителем воздуха, было легко увидеть его воздействие. Даже в настояшее время видны черные вкрапления на старых зданиях во многих больших городах. Кроме того, одежда была запачканной, занавески и портьеры почерневшими, страдали растения. Городские садовники тшательно выбирали только наиболее устойчивые растения. Несколько десятилетий назад деревья вблизи индустриальньгх центров были настолько почерневшими, что светлоокрашенные мотыльки не могли больше маскироваться. Меланиновые (темные) формы распространились, поскольку хищники не могли их легко увидеть. Растения также очень чуствительны к 502, и, по-видимому, первое из последствий заключается в ингибировании фотосинтеза. [c.60]

    Фотосинтез (Photosyntesis) Процесс превращения клетками высших растений энергии видимого света в энергию химических связей, сопровождаемый образованием органических соединений и кислорода из диоксида углерода и воды. [c.563]

    Так например при фотосинтезе хлористого водорода из элементов не только освещение готовой смеси вызывает утко-рение реакции но скорость реакции можно также увеличить, предварительно осветив видимым светом лишь один хлор. В этом слу чае степень активирования хлора в разных частях спестра. может быть установлена измерение.м [c.330]

    Интересно попутно отметить, что Хейдт исследовал процессы биологического фотосинтеза в кислых растворах перхлората, который был использован в этой работе в виду того, что он 1) не абсорбирует видимые и ультрафиолетовые лучи, 2) по сравнению с другими отрицательно заряженными ионами проявляет наименьшую тенденцию ассоциироваться в воде с другими ионами или молекулами и 3) совершенно химически инертен в разбавленных растворах. Хейдт установил, что это наиболее инертный прозрачный поглотитель, способный суш,ествовать в разбавленном водном растворе. [c.169]

    Для перехода к использованию энергии света необходимо было создание фоторецепторных молекул и подключение части из них к имеющимся электронтранспортным цепям. Такие фоторецепторы — М -порфирины — были сформированы. Фотосинтез начался, видимо, с создания системы фотоиндуцированного циклического электронного транспорта и служил сначала в качестве [c.354]


Смотреть страницы где упоминается термин Фотосинтез видимый: [c.338]    [c.360]    [c.215]    [c.54]    [c.209]    [c.527]    [c.26]    [c.7]    [c.10]    [c.220]    [c.351]    [c.353]    [c.324]   
Физиология растений (1980) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Видимость

Фотосинтез



© 2025 chem21.info Реклама на сайте