Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение света — первичный процесс фотосинтеза

    Фотохимическое восстановление хлорофилла, его аналогов и производных органическими восстановителями (аскорбиновой кислотой, цистеином и др.) с образованием продуктов, имеющих повышенную энергию за счет поглощенных квантов света, обнаружил А. А. Красновский [1349] спектральным путем и по изменению окислительно-восстановительного потенциала. В темноте происходит без участия кислорода обратный процесс окисления, возвращающий систему в теормодинамически устойчивое состояние. А. А. Красновский предполагает, что фотовосстановление хлорофилла происходит путем перехода на его бирадикал - X электрона от восстановителя НА, после чего последний уже без участия света передает протон окислителю В. Аналогично должны проходить первые стадии фотосинтеза в растениях, где НА — вода или первичные продукты ее восстановления и В — восстанавливающаяся Og или первичные продукты ее фиксации. Таким образом, перенос водорода совершается двумя сопряженными процессами переносом электрона к хлорофиллу и переносом протона к нему же или, что более вероятно, непосредственно к дальнейшим промежуточным продуктам цепи реакций, ведущих к восстановлению СОо. Упрощенная схема участия хлорофилла в фотосинтезе согласно этим представлениям имеет вид  [c.476]


    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]

    При исследовании функционирования пигментов применяют очень сложные модификации основного спектроскопического метода измерения поглощения света. Такие модификации позволяют изучать очень быстро протекающие процессы (в течение пико- или наносекунд). Исследуемую систему периодически освещают короткими интенсивными вспышками света и затем регистрируют изменения в спектре поглощения. Подобные методы позволили получить очень ценную информацию при исследовании первичных реакций фотосинтеза. [c.25]

    Концентрация энергии двух раздельно поглощенных квантов на одной молекулярной частице была продемонстрирована 1 аиболее четко в экспериментах по сенсибилизированному антистоксовому излучению, хотя этот эффект характерен для всех процессов кумуляции энергии. Объяснение этого кажущегося нарушения закона зависимости энергии кванта от частоты света (соотношения Планка), а также закона Штарка — Эйнштейна приводит к пониманию первичных процессов фотосинтеза, где именно такая концентрация энергии фотона необходима для протекания фотохимических реакций. [c.138]

    Фотохимические реакции фотосинтеза. Общие представления о фотосистемах. Фотохимический этап фотосинтеза включает в себя ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и транспорта электронов, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают реакционный центр, в котором протекают очень быстрые реакции первичного разделения зарядов комплекс компонентов, передающих электрон от реакционного центра (электрон-транспортная цепь) комплекс компонентов, осуществляющих работу по фотоокислению воды и восстановлению реакционного центра. [c.420]


    Поглощение света — первичный процесс фотосинтеза [c.333]

    Этот тетрапиррольный цикл фигурирует в уже упомянутых кобамидных ферментах и в кобаламине, в простетических группах ряда важнейших белков и в хлорофилле. Структура хлорофилла, ответственного за поглощение света — первичный процесс фотосинтеза, показана на рис. 2,14. Хлорофилл — координационное соединение магния, атом которого занимает центральное положение в плоском порфириновом цикле. [c.98]

    Несмотря на то что многие аспекты фотосинтеза еще не выяснены до конца, не вызывает сомнений, что первичный процесс представляет собой возбуждение пигмента зеленых растений хлорофилла-а (рис. 18-1) вследствие поглощения света энергия возникающих таким образом активированных молекул хлорофилла-а расходуется на окисление воды до кислорода и на восстановление двуокиси углерода. Природа первичного продукта восстановления двуокиси углерода не установлена с полной достоверностью, но он, по-видимому, весьма близок к о-глицериновой кислоте (см. также разд. 28-9А). [c.6]

    Затруднения этой гипотезы проявляются с особенной ясностью, если сопоставить, что на слабом свету достаточно восьми или десяти квант для восстановления одной молекулы двуокиси углерода. Но если каждый квант поглощенного света создает одну молекулу богатого энергией фосфата, то накопленная энергия составит всего 80— 100 ккал на 1 Эйнштейн. Известно, однако, что фотосинтез требует не менее 112 ккал/моль, а вероятно и больше, вследствие потерь на необратимые частные реакции. Конечно, квант света имеет достаточно энергии, чтобы образовать две или более молекул богатых энергией фосфатов, но такой результат вряд ли возможен, если фосфорилирование является первичным фотохимическим процессом, как предполагают Эмерсон и его сотрудники. [c.238]

    Прежде всего флуоресценция конкурирует только с первичной фотохимической реакцией, а не со всем процессом фотосинтеза. Скорость фотосинтеза, измеренная по выделению кислорода или поглощению углекислоты, часто определяется не только эффективностью первичного фотопроцесса, но также и скоростью одной или нескольких связанных с этим процессом темновых каталитических реакций. К их числу относятся реакции, которые превращают первичные фотопродукты в стабильные конечные продукты фотосинтеза. Когда эти завершающие реакции слишком слабы, чтобы идти наравне с первичным фотохимическим процессом (что может иметь место, например, в очень сильном свете, или при низких температурах, или в присутствии некоторых ядов), первичные фотопродукты будут накопляться до определенной концентрации и вновь исчезать при обратных реакциях. Вследствие этого квантовый выход фотосинтеза уменьшится, однако на интенсивности флуоресценции это не отразится, так как первичный фотохимический процесс, конкурирующий с флуоресценцией, продолжается с неизменной скоростью. Этим можно объяснить существование светового насыщения в фотосинтезе, без одновременного возрастания выхода флуоресценции (явление, о котором мы упоминали выше). [c.234]

    Было предложено много разнообразных схем, детализирующих процессы фотосинтеза, но ни одна из них не удовлетворяла совокупности большого экспериментального материала [288]. Даже самый первичный акт фотохимической реакции, связанный непосредственно с поглощением света, оставался неясным. В попытках согласовать экспериментальный материал е такими схемами приходилось постулировать промежуточные ступени с разными гипотетическими продуктами и делать сомнительные, с физико-химической точки зрения, предположения, как в распространенной еще недавно теории последовательного поглощения нескольких квантов света. [c.307]

    Взаимодействие отдельных компонентов протоплазмы ярко выявляется на примере фотосинтеза. Так, если поглощение кванта света и преобразование его энергии связано с хлоропластами, то вся дальнейшая цепь процессов аккумулирования этой энергии в химических связях органической молекулы, превращений первичного продукта фотосинтеза и т. д. протекает с участием других компонентов протоплазмы. [c.52]

    Каталитические функции, осуществляемые при участии восстановленных форм никотинамидных коферментов (НАДФ-Н), лежат в основе жизненных процессов — в синтезе первичного органического вещества из двуокиси углерода, воды, минеральных солей, фосфора, азота с поглощением квантов света солнечной энергии. Процесс фотосинтеза осуществляется в клетках зеленых частей растений и сопровождается выделением молекулярного кислорода в атмосферу. Возможно, и к этому имеются серьезные основания, весь или почти весь кислород атмосферы Земли образовался за счет реакции фотосинтеза. [c.318]

    Первичный источник энергии в биохимической эволюции. Вслед за В. П. Скулачевым [266] можно считать наиболее вероятным источником энергии во времена возникновения жизни свет. Этот вывод означает допущение первичности фотосинтеза, возникновения его в самом начале совершенствования систем энергетических превращений в биологических системах. Конечно же, речь не идет о процессе, подобном современному фотосинтезу. Ясно, что только избирательное поглощение излучения способно обеспечить энергией лишь определенные процессы, а не все реакции, как, например, при нагревании. В процессах, идущих в первичных матричных структурах, существование такой избирательности вполне вероятно. Для нуклеиновых оснований характерно сильное поглощение в области 260 нм, что соответствует (в расчете на 1 моль) порции энергии около 100 ккал. Это, конечно, слишком много, но для начала эволюционного совершенствования вполне терпимо. Основной результат поглощения света с такой длиной волны полинуклеотидными цепями — разрыв валентных связей [154], например, отрыв нуклеинового основания от рибозы, замена одного основания на другое. Вследствие интенсивных мутаций и обусловленных ими вариаций последовательности аминокислот в полипептидной цепи происходил отбор катализаторов, способствующих синтезу пигментов, которые поглощают видимое и ближнее инфракрасное излучение, соответствующее нужным квантам энергии. [c.105]


    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Свет, падающий на какую-либо систему, производит определенное действие только тогда, когда он поглощается отраженный, рассеянный или прошедший через систему свет на нее не действует. Энергия поглощенного света может превратиться в тепловую энергию (что случается, наиболее часто) или может быть передана электронам, как в первичных процессах фотосинтеза она может также превратиться в энергию света большей длины волны (флуоресценция) или может быть запасена в виде потенциальной химической энергии (именно это и происходит на более ппэдних этапах фотосинтеза). [c.108]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Исследования спектров флуоресценции, которые иногда с трудом поддаются интерпретации, могут дать важную информацию о первичных процессах фотосинтеза, т. е. о тех процессах, которые следуют непосредственно за актом поглощения света. Важной особенностью светсо-бирающей системы, которая в основном была исследована методом флуоресценции, является перенос квантов между пигментами [25]. При соответствующих условиях возбужденная молекула может передавать свою энергию соседней молекуле в том случае, если эти молекулы расположены достаточно близко друг к другу. В ламеллах хлоропластов молекулы пигментов плотно упакованы, благодаря чему этот процесс становится возможным. Кроме близкого расположения молекул, никаких других требований к пространственной ориентации не предъявляется это явление обнаруживается и в достаточно концентрированном растворе пигмента. [c.558]

    В основе первичных процессов фотосинтеза ППФ лежит сложная совокупность окислительно-восстановительных реакций переноса электрона между компонентами электрон-транспортной цепи ЭТЦ. Наибольший интерес представляют механизмы трех основных стадий трансформации энергии в ННФ поглощение света фотосинтетическими пигментами и миграция энергии электронного возбуждения на РЦ фотосинтеза первичное разделение зарядов и трансформация энергии в РЦ перенос электрона по ЭТЦ и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов (НАДФ и АТФ), используемых в дальнейших темновых реакциях фиксации СО2 и образования конечных продуктов фотосинтеза. [c.280]

    В задачу биофизики входит выяснение механизмов начальных стадий, которые следуют непосредственно за поглощением кванта света. Как мы увидим, несмотря на большое разнообразие фотобиологических эффектов, именно начальные этапы преобразования энергии света характеризуются общими молекулярными механизмами. В основе первичных процессов фотосинтеза лежит сложная совокупность окислительновосстановительных реакций переноса электрона в элек-трон-траспортной цепи (ЭТЦ). [c.158]

    Разумеется, на пути к максимальной краткости нельзя обойтись без жертв, возможно не всегда оправданных. Некоторые аспекты проблемы хотелось бы видеть более полно и глубоко орвещенными. На наш взгляд, это в первую очередь касается первичных процессов фотосинтеза и в особенности вопроса о реакционных центрах фотосинтеза и механизме их действия. Фотосинтез как специфический фотоэнергетический процесс отличается от других биохимических темновых процессов прежде всего теми первоначальными звеньями, благодаря которым энергия кванта трансформируется в энергию химической связи. Это — поглощение квантов молекулами. пигмента, перенос энергии электронного возбуждения в фотосинтетической единице, разделение зарядов и первичная стабилизация энергии в реакционных центрах. Именно здесь, в этих звеньях, преодолеваются наибольшие и специфические для фотосинтеза трудности, связанные с необходимостью сопряжения столь различных процессов, как поглощение электромагнитного излучения и биохимические реакции. И современные исследования шаг за шагом вскрывают механизм этих процессов, показывая, каким образом природа преодолела эти трудности и, создав уникальную молекулярную организацию фотосинтетических единиц реакционных центров, обеспечила высокую скорость и эффективность запасания энергии света (увы, пока еще не достигнутые в искусственных фотохимических системах ). Неудивительно поэтому, что изучение первичных процессов и в особенности реакционных центров фотосинтеза — одно из наиболее быстро развивающихся направлений, успехи которого основаны на использовании самых современных физических методов исследования (в частности, сверхбыстрой (пикосекундной) лазерной спектроскопии) и па объединении идей целого ряда наук от молекулярной биологии до квантовой механики. Несомненно этим достижениям должно быть уделено большее внимание несмотря на те очевидные трудности, которые возникают при изложении физических аспектов фотосинтеза в кни- [c.6]

    В настоящее время показано, что в первичных процессах фотосинтеза, связанных с поглощением молекулой хлорофилла кванта света, важную роль играют процессы передачи энергии. Исследо-вапия показали, что пе каждая молекула хлорофилла прииимает участие в последующих фотохимических реакциях. Непосредствеп-пая связь с реащионньш центром осуществляется примерно одпой из 200—250 молекул хлорофилла. Остальные молекулы хлорофилла воспринимают энергию и передают -о , ее этой молекуле-ловушке. Такое [c.122]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Процесс Ф. состоит пз реакций двух типов — фотолиза воды (разложения ее под действием света) и восстановления углекислого газа. Свет необходим лишь для первой реакции, а реакции восстановления СОг — темповые , т. е. идут без доступа света. В настоящее время принимается, что первым продуктом фотосинтеза является фосфоглицериновая кислота, которая затем превращается в сахарозу, крахмал и другие углеводы. Процессы образования углеводов при Ф. состоят пз большого числа реакций, идущих при участии многочисленных ферментов. Наряду с углеводами в процессе Ф. образуются и другие соединения, в частности аминокислоты. Результатом первичной фотохимической реакции Ф. является фосфорилирование адепозиндифосфорной кислоты с образованием аденозинтрифосфорной кислоты (АТФ), богатой энергией. В ходе этой реакции используется только часть поглощенной световой энергии, а другая ее часть расходуется на образование фермента — восстановителя — п на выделение кислорода. Углеводы же синтезируются из СОг за счет энергии АТФ при участии восстановителя. [c.329]

    Если растения на свету дышат, то все пять упоминавшихся выше показателей характеризуют результирующую, или видимую скорость фотосинтеза. Таким образом, наблюдаемое поглощение СОг представляет собой разность между количеством, поглощенным в процессе фотосинтеза, и количеством, выделенным при дыхании обратное справедливо для кислорода увеличение сухого веса и запасенной химической энергии также представляет собой чистый прирост, причем излучаемое тепло включает и то, которое выделяется в процессе дыхания. Высокие скорости фотосинтеза могут превышать скорость (темпового) дыхания в 10—30 раз. При таких условиях считается маловероятным, чтобы дыхание могло в заметной степени влиять на измеряемую скорость фотосинтеза, а потому им часто пренебрегают. Для некоторых целей это может быть наилучшим подходом при любой скорости фотосинтеза. В тех случаях, например, когда изучается корреляция между фотосинтезом и ростом, нас интересует, конечно, именно видимая скорость фотосинтеза. Если же внимание сосредоточено на самом фотосинтезе, то в идеале следует измерять образование восстановительной силы, которое, собственно, и представляет собой первичный фотосинтетический процесс. Как будет видно из гл. V, есть основание считать, что истинное (а не видимое) фотосинтетическое образование кислорода довольно точно характеризует этот процесс, хотя данный показатель и не учитывает возможное образование аденозинтри-фосфата (АТФ) путем циклического фотофосфорилирования (если только оно действительно происходит in vivo), поскольку оно не сопровождается выделением кислорода. [c.80]

    Изучение компонентов фотосинтетической цепи транспорта электронов так же, как и первичных продуктов фотохимической реакции, проводится с помощью обладающих высокой чувствительностью спектральных методов (абсорбционная дифференциальная спектрофотометрия, импульсная спектрофотометрия). Многие уча-ствуицие в процессе фотосинтеза переносчики электронов при окислении или восстановлении меняют спектр поглощения. Вышеуказанные методы позволяют определять вызванные светом небольшие обратимые изменения в поглощении света организмами in vivo которым можно судить о наличии, состоянии и характере индуцированных светом окислительно-восстановительных превращений данного соединения. Некоторые интермедиаты определяют по изменениям в спектре флуоресценции. [c.172]

    Не все стадии в процессе фотосинтеза являются выясненными и строго доказанными. Однако несомненно, что возбужденный светом хлорофилл является донором электронов, восстанавливая при участии атомов водорода из воды НАДФ до НАДФ-Нг, и, с другой стороны,— акцептором электронов, которые от ОН-ионов воды через цитохром возвращаются на хлорофилл или расходуются на образование АТФ. В то время как первичные фотофизические процессы при фотосинтезе заключаются в поглощении и переносе энергии квантов света, первичные фотохимические процессы заключаются прежде всего в образовании трех веществ молекулярного кислорода, восстановленного НАД или НАДФ и АТФ. Именно в реакциях [c.338]

    В ходе исследования механизма первичных реакций фотосинтеза было сделано еще одно важнейшее открытие. Арнон, Аллен и Уэтли, а также Гиббс, Френкель, а позднее и другие исследователи показали, что изолированные хлоропласты способны самостоятельно без участия других клеточных частиц синтезировать аденозинтрифосфат (АТФ) из аденозиндифосфата (АДФ) и неорганической фосфорной кислоты, используя для этого энергию поглощенного кванта света. Химическое строение и значение АТФ подробно описываются в главе 1П книги. Здесь же отметим лишь, что два конечных остатка фосфорной кислоты в молекуле АТФ связаны с остальной частью молекулы очень богатыми энергией пирофосфатными связями. Эта энергия находится в легко доступной форме, в связи с чем она может быть использована клеткой в самых разнообразных процессах, в различных видах клеточной работы , осуществляющейся с затратой энергии. [c.156]

    Первичный этап использования последней в процессе фотосинтеза включает в себя поглощение кванта света молекулой хлорофилла и другими пигментами и переход хлорофилла в элек- [c.172]

    Во всех фотобиологических процессах энергия света необходима для преодоления активационных барьеров химических превращений. Однако в фотосинтезе при этом происходит непосредственное запасание световой энергии и виде энергии химических связей, конечных продуктов (глюкоза), поскольку последние обладают большим запасом свободной энергии по сравнению с исходными веществами (СО2 и Н2О). В остальных фотобиологических процессах свет также индуцирует фотохимические реакции, но в их продуктах не содержится избытка свободной энергии по сравнению с исходными веществами. Тем не менее и в этих случаях в последующих за фотохимической стадиях темновых процесах могут инициироваться сложные физиолого-биохимические превращения, в ходе которых мобилизуются большие количества свободной энергии, ранее запасенной в биоструктурах. Конечные результаты такого рода превращений (например, стимулирующее действие света на морфогенез, биосинтез пигментов, фотостимуляция дыхания) по общему энергетическому эффекту могут быть весьма велики, хотя непосредственного запасания энергии света при этом и не происходит. Последовательность превращений в фотобиологических процессах может включать следующие стадии поглощение света хромофорной группой и образование электронно-возбужденных состояний миграция энергии электронного возбуждения первичный фотофизический акт и появление первичных фотопродуктов промежуточные стадии, включая перенос заряда, образование первичных стабильных химических продуктов физиологобиохимические процессы конечный фотобиологический эффект.  [c.276]

    Корреляция с оптическими данными. Выцветание полосы поглощения бактериохлорофилла с центром вблизи 870 нм на свету наблюдается in vivo до 1 К. С использованием импульсного лазера показано, что выцветание происходит за время менее 1 МКС после начала вспышки квантовый выход процесса равен 0,9—1,0. Это доказывает, что компонента бактериохлорофилла, поглощающая при 870 нм, является центром первичной фотохимической реакции в бактериальном фотосинтезе. Стационарная концентрация неспаренных электронов в пределах ошибки эксперимента совпадает с концентрацией молекул бактериохлорофилла, переставших в результате освещения поглощать свет 870 нм. Кроме того, кривые нарастания и спада сигнала ЭПР и изменения оптического поглощения при 870 нм в основном совпадают. Отсюда вытекает необходимая связь между данными ЭПР и оптической спектроскопией, позволяющая идентифицировать источник светоиндуцированного сигнала ЭПР как свободный радикал, образующийся из бактериохлорофилла. [c.415]

    Опытами Л. Н. М. Дюйзенса (1961) на водорослях методами абсорбционной дифференциальной спектрометрии показано, что длинноволновый свет (X > 680 нм) вызывает окисление цитохрома / (регистрировалось по уменьшению поглощения при 420 нм). Использование коротковолнового освещения (X 562 нм) приводило к частичному восстановлению цитохрома / (рис. XXVII.3). Ингибитор фотосинтеза ДХММ (3-(3,4-дихлорфенил)-1,1-диметилмочевина), или диурон, снимал восстанавливающее действие коротковолнового света. Согласно Z-схеме (см. рис. XXVII.2), дальний красный свет окисляет цитохром, отбирая от него электроны для восстановления первичного окислителя, образуемого ФС I. Коротковолновый свет восполняет убыль электронов на цитохроме за счет восстановления его ФС II. Диурон блокирует этот процесс, что приводит к ингибированию выделения О2. Объект можно освещать двумя последовательными вспышками света вначале красного (X < 680 нм), затем дальнего красного света (X > 680 нм). Тогда электроны, освобожденные в ФС II в ответ на первую вспышку, достигнут через определенное время цитохрома /, который затем окислится фотосистемой ФС I под действием второй вспышки. Варьирование интервала времени между вспышками позволяет определить время, необходимое для переноса электрона на цитохром от ФС II оно составляет 5 10 с. [c.282]

    Исследования последних лет (Д. Арнон и др.) показали, что первичными стабильными продуктами фотосинтеза, в которых аккумулируется энергия поглощенного кванта света и водород, являются АТФ и восстановленный никотинамидадениндинуклео-тидфосфат (НАДФНг). Они образуются в процессе двух реакции циклического (1) и нециклического (2) фотосинтетического фосфорилирования и представляют собой компоненты восстановительной силы , которая обусловливает восстановление СОг и образование углеводов (3) в растении. Эти реакции можно схематически записать в виде уравнений  [c.182]

    В растительных клетках, содержащих хлоропласты, помимо Сз- и С4-путей фотосинтеза, осуществляется также фотодыхание, т. е. активируемый светом процесс высвобождения СО 2 и поглощения О2, который значительно отличается от темпового дыхания митохондрий. Так как при этом первичным продуктом является гликолевая кислота, то этот путь получил название гликолатного. У лекоторых Сз-растений с малой эффективностью фотосинтеза интенсивность фотодыхания может достигать 50 % от интенсивности фотосинтеза. [c.97]


Смотреть страницы где упоминается термин Поглощение света — первичный процесс фотосинтеза: [c.236]    [c.352]    [c.630]    [c.583]    [c.474]    [c.231]    [c.239]   
Смотреть главы в:

Биохимия природных пигментов -> Поглощение света — первичный процесс фотосинтеза




ПОИСК





Смотрите так же термины и статьи:

Процесс поглощения света

Фотосинтез



© 2025 chem21.info Реклама на сайте