Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометрия в видимой спектра

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]


    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    СПЕКТРОМЕТРИЯ В ВИДИМОЙ И УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ СПЕКТРА, ЭМИССИЯ И ЛЮМИНЕСЦЕНЦИЯ [c.148]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]

    Сравнение с УФ/видимыми-спектрами [19], полученными на УФ-спектрометре (рисунок 1.7,6 - область, выделенная пунктиром), показывает их удовлетворительное сходство. [c.20]

    Замена телескопа спектрометра постоянного отклонения камерой с фокусным расстоянием примерно 1 м, как это обычно дег лается, позволяет фотографировать видимый спектр на фотопластинку размером 8,25 X 10,8 см. Спектр примерно от 7000 до 4000 А растягивается таким прибором на длину от 30 до 60 мм в зависимости от дисперсии призмы. [c.21]


    Иногда под М. а. понимают только установление строения хим. соединений. При этом сначала определяют его эмпирич. ф-лу по данным качеств, и количеств, элементного анализа. Эмпирич. ф-лу и мол. массу соединения можно также определить масс-спектрометрически, напр, с помощью масс-спектрометрии высокого разрешения (погрешности измерения масс ионов 10 " -10 атомных едшшц). Спектроскопия в видимой и УФ областях позволяет установить класс (тип) соединения, наличие в его молекуле хромс -форов. С помощью ИК спектроскопии осуществляют функцион. анализ в-в. Большой объем информации о строении хим. соединения дает спектроскопия ЯМР и масс-спектро-метрия. Совместное употребление данных ЯМР, оптических и масс-спектров в подавляющем большинстве случаев позволяет однозначно установить строение хим. соединения. Дополнительно используют рентгеноструктурный анализ, рентгеноэлектронную спектроскопию и др. методы. Автоматизир. системы установления строения орг. в-в включают помимо набора спектральных, хроматографич. и комбинир. приборов также ЭВМ, банки спектральных данных и пакеты программ для ЭВМ, позволяющие обрабатывать полученные спектры, сравнивать их с данными банков, устанавливать и использовать спектрально-структурные корреляции и т. п. [c.120]

    Приемник излучения. В ближней ИК-области (примерно до 2,5 мкм) в качестве приемников излучения используют сульфиды тяжелых металлов, например сульфид свинца. Такие детекторы установлены на некоторых серийных спектрометрах, предназначенных для работы в видимой области, что позволяет записывать на иих также спектры в ближней ИК-области. Для регистрации излучения с большими длинами волн используют пневматические приемники, в которых под действием ИК-излучения меняется давление газа термопары,, термометры сопротивления (болометры) и др. [c.204]

    Наряду с другими физическими методами, такими, как ядерный магнитный резонанс, рентгеноструктурный анализ, масс-спектрометрия и др., или в сочетании с ними, абсорбционная спектроскопия в УФ-, видимой и ИК-областях электромагнитного спектра дает возможность получить важную информацию о структуре и свойствах химических соединений. [c.191]

    Спектрометры для ультрафиолетовой и видимой областей спектра. Наиболее распространенным прибором является нерегистрирующий спектрофотометр СФ-4 (СФ-4А) (рис. 174). Прибор построен по схеме электрической компенсации сигнала. [c.310]

    Общая конструкция ИК-спектрометра основана на тех же принципах, что и прибора, работающего в ультрафиолетовой и видимой областях спектра. Она включает источник излучения, диспергирующую систему (монохроматор) и регистрирующий элемент (детектор). Специфика ИК-излучения приводит к особенностям в устройстве каждого элемента. [c.203]

    При наблюдении с помощью спектрометра видно, что спектр испускания водорода состоит из нескольких групп — серий — линий. Эти серии называют именами открывших их ученых (рис. 2.2, а) на рис. 2.2, б показана серия Бальмера, наблюдаемая в видимой части спектра. [c.36]

    Для спектроскопических и других исследований растворов под давлением 1000—10 000 атм необходимы кюветы специальной конструкции. Основная трудность при создании таких кювет заключается в том, что под влиянием давления в оптических окнах возникает значительное и переменное двулучепреломление. Оптические окна, предназначенные для работы под высоким давлением, изготавливают из стекла пирекс или кварца. Во избежание утечки раствора используют сложную уплотнительную систему. Кюветы, предназначенные для работы под высоким давлением, можно использовать в спектрометрах для снятия ультрафиолетовых, видимых и инфракрасных спектров, изучения флуоресценции, фосфоресценции, светорассеяния и т. п. [c.226]

    Когда используют интенсивный источник первичного излучения (например, лазер), атомно-флуоресцентная спектрометрия (АФС) может быть использована как аналитический метод. В этом случае источник первичного излучения располагают под углом к остальной оптической системе, чтобы детектор получал только флуоресцентный сигнал. Действительно, лазерно-индуцированная атомно-флуоресцентная спектрометрия является, по-видимому, одним из наиболее чувствительных аналитических методов. Однако, лазерно-индуцированная АФС не нашла воплощения в серийных приборах, что связано с трудностями использования лазеров в УФ-области спектра. [c.41]

    Спектрометрия в видимой и УФ-области спектра [c.149]

    СПЕКТРОФОТОМЁТРЙЯ, метод исследования и аналюа в-в, основанный на измерении спектров поглощения в оптич. области электромагн. излучения. Иногда под С. понимают раздел физики, объединяющий спектроскопию (как науку о спектрах электромагн. излучения), фотометрию и спектрометрию [как теорию и практику измерени<г соотв. интенсивности и длины волны (или частоты) электромагн. излучения] на практике С. часто отождествляют с оптич. спектроскопией. По типам изучаемых систем С. обычно делят на молекулярную и атомную. Различают С. в ИК, видимой и УФ областях спектра (см. Инфракрасная спектроскопия. Ультрафиолетовая спектроскопия). [c.396]


    Для получения полных спектров в ультрафиолетовом и видимом диапазоне применяют либо двулучевые сканирующие системы, либо многоканальные. Спектрометры обоих типов работают в рамках выполнения закона Бера и используют монохроматичное излучение источника. Принципиальная схема спектрометров включает полихроматический широкополосный источник спектра, монохроматор (в основном дифракционные решетки), кювету с исследуемым образцом, детектор, электронные устройства, а также компьютер для обработки и хранения данных. Кювета с образцом может располагаться либо [c.150]

    Приборы, применяемые в спектральном анализе, различаются по типJ диспергирования (призменные и дифракционные), по области спектра, по способу регистрации спектра и по назначению. По области спектра используют приборы для ИК- видимой, УФ-и вакуумной областей. По способу регистрации спектра различают приборы визуальные (спектроскопы и стилоскопы), фотографические (спектрографы), фотоэлектрические (квантометры, фотоэлектрические стилометры и др.). По назначению бывают монохроматоры и полихроматоры, выделяющие одну или несколько узких спектральных областей или линий спектроскопы и спектрографы, позволяющие наблюдать или получать широкие участки спектров спектрометры, сканирующие спектры при помощи фотоэлектрического приемника и регистрирующего устройства. [c.53]

    Определив молекулярную массу с помощью масс-спектрометрии, из спектра поглощения красителя в видимой области можно вычислить значение молярного коэффициента погащения (е) и получить полезную информацию о химическом строении красителя. [c.372]

    Для проверки этого предположения бьшо необходимо приготовить образец без доступа воздуха. Бьша создана специальная ячейка, к нижней части которой через стеклянный шлиф присоединяли капилляф. При ее разработке исходили из следующих опытных результатов концентрация радикалов растет с ростом плотности тока разряда, при больших плотностях тока происходит отслаивание и осыпание пленки с электродов, что связано, по-видимому, с местным перегревом пленки и возникновением в ней напряжений. В ячейке между электродами зажигали разряд, в процессе которого кусочки пленки осьшались непосредственно в капилляр, который затем вакуумировали, запаивали и помещали в резонатор ЭПР-спектрометра. Полученный спектр такого образца представлял собой синглет, который не претерпевал из— меневий при напуске воздуха в капилляр. Сравнение спектра [c.30]

    Однако существует и другой метод выделения спектральных составляющих, который основан на применении двухлучевого интерферометра. Для измерения ИК-спектров наиболее приспособлен интерферометр Майкельсона. Используя это устройство, Май-кельсон [1, 2] в конце прошлого века показал, что информация о тонкой структуре отдельной линии в видимом спектре ртутной дуги может быть получена, в то время как с помощью призменных спектрометров разрешить такую структуру невозможно. Однако до появления цифровой вычислительной техники нельзя было получить правильные спектры широкополосных источников из ин-терференцированной картины (интерферограммы), поскольку последняя связана со спектром комплексным соотношением, известным как преобразование Фурье. [c.92]

Рис. 1.7. Спектры СбО и С70 в I4, полученные на фотоэлектроколориметре КФК-2 (а) и спектры гексановых растворов С60 и С70 в УФ/видимой-области, полученные на UV/vis-спектрометре в [19] (б) Рис. 1.7. Спектры СбО и С70 в I4, полученные на фотоэлектроколориметре КФК-2 (а) и спектры гексановых растворов С60 и С70 в УФ/<a href="/info/5193">видимой-области</a>, полученные на UV/vis-спектрометре в [19] (б)
    Существует значительное число модификаций методов, основанных на детектировании электрохимически генерированных промежуточных продуктов посредством получения их оптических спектров в ультрафиолетовой, видимой или инфракрасной областях поглощения света. Идентификация продуктов реакции производится по длинам волн и интенсивностям характеристических полос поглощения. Наибольшую информацию о природе частиц можно извлечь из данных ИК-спектрометрии, однако ее сравнительно невысокая чувствительность, определяемая небольшими значениями коэффициента молярной экстинции е, требует достаточно высоких концентраций интермедиата, труднореализуемых в случае короткоживущих частиц. Дополнительные осложнения при использовании ИК-спектрометрии связаны с трудностями применения в качестве растворителей воды и других гидроксилсодер-жащих соединений, сильно поглощающих в исследуемой области частот. В силу названных причин ИК-спектрометрия для изучения промежуточных продуктов электродных реакций используется относительно редко. Большим достоинством видимой и УФ-спектро-фотометрии является высокая чувствительность метода. Однако в этой области спектра низка специфичность поглощения, т. е. полосы многих хромофоров перекрываются. Пики поглощения находящихся в растворе частиц, как правило, очень широкие, и спектры сильно искажаются примесями, поглощающими свет в той же области спектра. Поэтому применение УФ-спектрометрии для установления структуры частиц оказывается малоэффективным. Значительно чаще такие измерения используются для изучения кинетики накопления или исчезновения промежуточных продуктов. [c.220]

    Источник излучения. Если в приборе для видимой или УФ-области источник излучения работает обычно в области 0,2—0,4 или 0,35—0,8 мкм, то в ИК-спектрометре он должен перекрыть значительно больший интервал длин волн. Наиболее распространенные источники ИК-излучения — нагреваемые током до 1500—1800° С стержни из карбида кремния (глобар) или из окислов редкоземельных элементов (штифт Нернста). Электрическое сопротивление таких источников уменьшается с повышением температуры, поэтому необходимо использовать балластное сопротивление. Глобар и штифт Нернста дают мощное ИК-излучение, но оно приходится в основном на ближнюю ИК-область и быстро падает с увеличением длины волны. Изменение энергии источника с длиной волны компенсируется в спектрометре программированным раскрытием входной щели прибора. В длинноволновой части ИК-спектра интенсивность излучения этих источников становится недостаточной, и в области ниже 200 см применяют ртутно-кварцевые лампы высокого давления. [c.203]

    Спектр поелош,ения получают, пропуская через Спектры поглощения — вещество белый свет (включающий все длины волн черные полосы в видимой области). Свет определенных длин волн на ярком фоне поглощается веществом и на этих местах появляются черные линии. Для наблюдения за спектрами испускания и поглощения используют специальные приборы — спектрометры (о молекулярных спектрах см. разд. 34.9.1). [c.36]

    Любое органическое соедпиенис по1Лощает свет в ультрафиолетовой или видимой областях. На современных спектрометрах вполне воз.можио измерение УФ-спектров поглощения с 190 им. При измерениях, проводимых обычно в рас- [c.122]

    ИМПУЛЬСНЫЙ ФОТОЛИЗ, метод исследования быстрых хим. р-ций и их короткоживущих продуктов (время жизни от долей до 10" с), основанный на возбуждении молекул мощным световым импульсом. Сочетает возможность мгновенного (за время светового импульса) получения активных частиц с регистрацией их во времени. Возбуждение осуществляется светом импульсной лампы за Ю - — 10 с или лазерами за 10" — 10 с. Наиб, распростр. методы регистрации — спектрофотометрич. (осцил-лографич.) и спектрографический с помощью спектров поглощения в видимой и УФ областях. Спектрофотометрич. регистрация совместно с примен. приемов увеличения отношения сигнал/шум позволяет исследовать короткоживу-щие частицы с конц. до 10 моль/л. Для регистрации примен. также методы люминесценции, ЭПР, масс-спектрометрии и кондуктометрии. С помощью И. ф. изучены св-ва большого числа нестабильных своб. радикалов, ионов, ион-радикалов, триплетных состояний, эксимеров и эксиплексов исследуются механизмы фотохим. и фотобиол. процессов. В квантовой электронике И. ф. примен. для изучения роли триплетных состояний в процессах генерации, а также для исследования механизма фотодеструкции и нахождения путей фотостабилизации молекул активных сред в жидкостных лазерах. [c.218]

    Теперь обсудим те стандартные условия, в которых должен регистрироваться спектр тестового образца. С тем, что проводить обсуждавшиеся ранее процедуры действительно необходимо, согласятся, по-видимо-му, все спектроскописты, даже те, кто иа практике их и не делает. Что же касается стандартных условий, то здесь вообще иет никаких обязательных элементов, не считая того, что это должно быть одно прохождение с импульсом длительностью тг/2 (см. гл. 4). В результате остаются произвольными такие параметры, как ширина спектрального диапазона, полоса фильтра и взвепшвающая функция для обработки спектра. Поэтому едииственное, что можио сделать для сравнения чувствительности спектрометров при их покупке, это настаивать на проведении гестов с совершенно одинаковыми, параметрами и в вашем присутствии. [c.84]

    Для идентификации и исследования Р. с. используют также спектры в видимой и ультрафиолетовой областях, ИК спектры и спектры комбинац. рассеяния (часто в сочетании с импульсным фотолизом), а также масс-спектрометрию. [c.156]

    Имеются фурье-спектрометры для пол чения спектров в разл. областях - от неск. см до десятков тыс. см в т.ч. спектров комбинац. рассеяния. На ИК фурье-спевггрометрах достигнуго разрешение до 1,3 10 см , точность определения волнового числа до lO" см". Созданы приборы для видимой и УФ областей, на к-рых получают, в частности, эмиссионные спектры ряда элементов (U, Np, Pd, Но и др.) с воспроизводимостью волновых чисел 210" см при (SIN) > 10 . Чувствительность аналит. определений на фурье-спектрометре обычно в 100-1000 раз выше, производительность в сотни раз больше, погрешности измерений на порядок меньше, чем в случае использования дисперсионных приборов. Пределы обнаружения ряда в-в достигают долей нг, а использование микроскопа позволяет анализировать включения в образцах размерами 10х 10 мкм . С помощью ФС можно изучать кинетику р-ций, протекающих за время ок. 1 мс. [c.222]

    Когда было установлено, что существуют и другие виды электромагнитного излучения, распространяющиеся со скоростью света, стало-ясно, что свет не уникальное явление природы, а лишь видимое проявление гораздо более общего эффекта, к которому относятся также инфракрасное излучение (открытое Гершелем в 1800г.), электрическое излучение (открытое Герцем в 1887 г.) и рентгеновское излучение (открытое Рентгеном в 1896 г.). Все эти виды излучения относятся к той или иной части электромагнитного спектра (рис. 2.14). Электромагнитный спектр непрерывен и простирается от области чрезвычайно коротких длин волн и высоких частот, соответствующей космическим лучам, до области чрезвычайно длинных и низкочастотных электрических волн. Все виды излучения отличаются только длиной волны X, т.е. расстоянием между двумя последовательными максимумами волнового процесса. Любое электромагнитное излучение распространяется с одинаковой скоростью, которая в вакууме составляет 3,00-10 м/с (обозначается с), и проявляет волновые свойства. В спектре электромагнитного излучения принято выделять разлитаые области, однако между ними не существует четких границ правда, видимая часть спектра (380—760 нм) имеет довольно определенные границы, но это обусловлено ограниченной способностью человеческого глаза к восприятию излучения. Для обнаружения излучения в различных областях электромагнитного спектра созданы специальные приборы, называемые спектроскопами, спектрометрами или спектрографами в зависимости от того, каким образом в них производится регистрация излучения. [c.33]

    С практической точки зрения одним из основных достоинств спектрометра с дисперсией по энергии является скорость, с которой можно набирать и интерпретировать данные. Непрерывный набор е широком диапазоне энергий является основным преимуществом при проведении качественного анализа, которое компенсирует некоторые вышеуказанные недостатки. Кристалл-дифракционный спектрометр при механическом сканировании находится на каждой регистрируемой длине волны лишь в течение короткого промежутка времени от полного сканирования. Следовательно, при наблюдении за одним элементом или даже за частью фона информация обо всех остальных элементах отбрасывается. Так или иначе на измерение каждого отдельного пика приходится только от 1/100 до 1/1000 общего времени сбора данных, если только кристалл-дифракциопный спектрометр специально не запрограммирован на переход в положение пика. В случае спектрометра с дисперсией по энергии при времени счета 100 с и скорости счета 2000 имп./с получаемый спектр содержит 200 000 импульсов. Даже если половина этого количества импульсов принадлежит фону, большинство измеряемых примесей, присутствующих в количестве, больше.м нескольких десятых процента, по всей видимости, будут обнаружены. Более того, при использовании линий-маркеров и других вспомогательных средств для интерпретации можно за несколько минут провести качественный анализ. В случае кристалл-дифракционного спектрометра необходимо использовать несколько кристаллов, охватывающих различные диапазоны длин волн, при этом типичное время набора и пнтерпретаиии данных 10—30 мин. [c.264]

    В обычных спектрометрах с низкой светосилой в качестве источника сплошного спектра в диапазоне от 200 до 400 нм (УФ —видимая область) можно использовать только дейтериевые лампы, а в области 400-2500 нм — вольфрамогалогенные лампы (видимая область — ближний ИК-диапазон). Стеклянные кюветы толщиной 1 см, обычно применяемые для определения микроколичеств соединений, достаточно прозрачны в видимой области. Более доро- [c.151]


Смотреть страницы где упоминается термин Спектрометрия в видимой спектра: [c.5]    [c.123]    [c.80]    [c.254]    [c.40]    [c.188]    [c.183]    [c.280]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура для спектрометрии в ультрафиолетовой и видимой областях спектра

Видимость

Спектрометрия в видимой

Спектрометрия в видимой и ультрафиолетовой области спектра, эмиссия и люминесценция



© 2025 chem21.info Реклама на сайте