Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия инфракрасная колебательная

    Молекулярная спектроскопия. Электронные переходы, колебательные переходы и вращательные переходы. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Спектр поглощения. Закон Беера и молярный коэффициент экстинкции. Сопряженные полнены. [c.551]

    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]


    Инфракрасные спектры молекул — результат энергетических переходов между различными колебательными, вращательными и реже электронными уровнями под действием электромагнитного излучения. Эти переходы значительно различаются по энергиям примерно от 0,4 до 140 кДж/моль. Соответственно различают ближнюю ИК-область в диапазоне примерно от 0,8 до 2,5 мкм (12 500—4000 см- ), в которой наблюдаются электронные и колебательные переходы основную или среднюю ИК-область от 2,5 до 16 мкм (4000—625 см ), связанную в основном с колебаниями молекул, и дальнюю, или длинноволновую, ИК-область от 16 до 200 мкм (625—50 см ), в которой наблюдаются вращательные переходы, колебания в тяжелых молекулах, в ионных и молекулярных кристаллах, некоторые электронные переходы в твердых телах, крутильные и скелетно-деформационные колебания в сложных молекулах, например в биополимерах. В настоящее время наибольшее развитие получила спектроскопия в средней ИК-области, в которой работает большинство серийных приборов. [c.199]

    Разность в энергиях возбуждения между колебательными энергетическими уровнями в молекуле находится в области — 1,2 эв. Это соответствует абсорбции при колебательном возбуждении — 1 10 —2,5-10 А или 1 —25 м.к (где 1 мк 10 А). Такую спектральную область часто называют ближней инфракрасной-, поглощение здесь возникает благодаря фундаментальным растягивающим колебаниям большинства связей, а также многим другим колебательным явлениям. Будучи одним из наиболее широко используемых методов спектроскопического анализа, метод инфракрасной спектроскопии и интерпретации инфракрасных спектров подробно обсуждаются во многих монографиях  [c.195]

    Инфракрасная (ИК-) спектроскопия — это один из методов оптической спектроскопии. С помощью ИК-спектроскопии определяют строение молекул и вещества в целом, так как в инфракрасной области расположено большинство колебательных и вращательных спектров молекул. Инфракрасная область — это длинноволновая часть спектра с длинами волн от 0,75 до 300 мкм причем часть спектра в интервале длин от 0,75 до 2,5 мкм называют ближней, от 2,5 до 15 мкм — средней и от 15 до 300 мкм — далекой областью. Этому делению соответствуют ИК-спектрометры, определенные оптические материалы, из которых готовят призмы, источники и приемники электромагнитного излучения. [c.185]

    Интерпретация спектров ЯМР поливинилхлорида затянулась и оказалась спорной, частично из-за того, что не удавалось отнести все линии в спектрах, частично- из-за противоречивых выводов, сделанных на основании данных других методов, в особенности колебательной спектроскопии (инфракрасной и спектроскопии комбинационного рассеяния). Эти неясности и расхождения, по-видимому, в значительной степени должны быть разрешены при регистрации спектров ЯМР в сильных магнитных полях. Изучение модельных соединений — 2,4-дихлорпентанов и 2,4,6-трихлор-гептанов (см. разд. 3.2 и 9.2) — оказалось очень полезным при определении конформации полимерной цепи, но в го же время вызвало некоторую путаницу при установлении ее стереохимической конфигурации. Это касается, главным образом, спектра р-метиленовых групп, для которых разница между химическими сдвигами протонов уменьшается с ростом числа соседних т-диад. Мы не будем обсуждать здесь все довольно многочисленные работы, посвященные этой проблеме [1—24], а остановимся подробнее на результатах наиболее ранних и наиболее поздних работ. [c.119]


    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]

    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ - см. Колебательная спектроскопия. [c.430]

    Завершая рассмотрение спектральных методов анализа, следует отметить, что их большое разнообразие позволяет решать самые разные задачи. При этом для проведения количественного изотопного анализа чаш,е всего используется спектроскопия в эмиссионном варианте. Что касается адсорбционных методов, то они для количественного анализа используются реже. Пожалуй, исключение составляет определение содержания дейтерия в воде методом инфракрасной (колебательной) спектроскопии. [c.103]

    Инфракрасная спектроскопия. Молекулярные колебательные спектры [c.371]

    Впервые инфракрасная (колебательная) спектроскопия была применена к проблемам адсорбции и катализа в СССР в моей лаборатории в 1940-х годах сначала па примере молекулярных паров, адсорбированных силикагелями и алюмосиликагелями. В 1950-х годах появились работы в США по ИК-спектрам молекул газов, адсорбированных па диспергированных Металлах (Эйшенс). В настоящее время исследования ИК-спектров адсорбированных молекул приняли в различных странах настолько большой масштаб, что невозможно их обозреть в коротком сообщении. Остановлюсь поэтому преимущественно только на наших работах. [c.89]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    Инфракрасная спектроскопия (ИКС) -- это раздел молекулярной оптической спектроскопии, изучающей спектры поглощения электромагнитных волн в ИК-области (г = 50ч-5000 см ). ИК-спектры возникают в результате переходов между колебательными и вращательными уровнями основного электронного состояния молекулы. [c.243]

    Инфракрасная спектроскопия (ИКС). Исследуя колебательные спектры (с помощью инфракрасных лучей), можно установить пространственное строение молекулы и охарактеризовать природу химической связи, в частности, ее полярность, поляризуемость, кратность и др. Колебательный спектр молекулы определяют главным образом масса колеблющихся атомов и их группировок и жесткость валентной связи. Последняя характеризуется так называемой силовой константой к, выражаемой в дн/см или мдн/А. [c.176]


    Взаимосвязь двух понятий — внутреннего вращения и поворотной изомерии — стала ясной в приложении ко многим низкомолекулярным веществам уже давно, особенно при использовании метода инфракрасной спектроскопии [47], Поворотная изомерия и заторможенность внутреннего вращения имеют одну и ту же причину— наличие потенциальных барьеров. На заторможенность внутреннего вращения указывает также факт, что теплоемкость молекул, содержащих единичные С—С-связи, находится между значениями, характерными для вращательных и колебательных степеней свободы. [c.135]

    Инфракрасная спектроскопия, в основе которой лежит регистрация и анализ колебательных (или колебательно-вращательных) спектров, имеет дело главным образом с изучением молекулярных [c.184]

    Вращательные переходы отвечают энергиям и частотам, находящимся на границе инфракрасной области и области радиочастот. Значимость этого диапазона частот как такового для химии мала по сравнению с электронной и колебательной спектроскопией. Однако в сочетании с действием магнитного поля на вещество радиоспектроскопия позволила создать чрезвычайно эффективные методы исследования строения вещества — магнитную радиоспектроскопию или методы магнитного резонанса. [c.149]

    Переходам между колебательными состояниями соответствует средняя инфракрасная область, характеризуемая частотами 10 — I0 Гц и длинами волн соответственно 3000 — 30 ООО нм. Колебательная спектроскопия также очень широко используется в химии и будет рассмотрена в дальнейшем более подробно. [c.170]

    Вращательные переходы отвечают энергиям и частотам, находящимся на границе инфракрасной области и области радиочастот. Значимость этого диапазона частот как такового для химии мала по сравнению с электронной и колебательной спектроскопией. Однако в сочетании с действием магнитного поля на вещество радиоспектроскопия позволила создать чрезвычайно эффективные мето- [c.170]

    В процессе симметричного валентного колебания молекула претерпевает растяжение или сжатие, при этом электронная плотность в элементе объема изменяется, и по этой причине изменяется поляризуемость. Неизменным остается дипольный момент. Вот почему такие колебания следует наблюдать в спектре комбинационного рассеяния [см. уравнение (5.3.13)], но не в инфракрасном [см. уравнение (5.3.12)]. Для антисимметричных валентных колебаний складываются обратные соотношения. Для молекул с центром симметрии имеется правило альтернативного запрета, по которому колебание может быть активным только в инфракрасных спектрах или в спектрах комбинационного рассеяния. Из этого следует необходимость комбинирования методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния при изучении колебательных спектров молекул. [c.222]

    Для распознавания молекул, особенно молекул органических веществ, широко применяют инфракрасную абсорбционную спектроскопию. Метод основан на том, что в отдельных частях молекул (в группах атомов) совершаются колебательные движения, на которые остальные атомы молекулы влияют мало. Энергия колебательного движения квантована, т. е. в молекуле имеется определенный набор энергетических уровней. Разность между двумя уровнями определяет длину волны поглощаемого фотона согласно уравнению (1.5). На наличие или отсутствие аналитических сигналов (поглощений) исследу- [c.13]

    Инфракрасная спектроскопия связана с колебательно-вращательным движением свободных или взаимодействующих молекул, а также отдельных связей в сложных молекулах. Она охватывает длинноволновую область спектра, которая начинается сразу же за красным концом видимой части спектра и распространяется далеко в микроволновую область, где ее граница находится около 1=2,5 м. [c.85]

    Инфракрасная спектроскопия (ИКС). С помощью инфракрасных лучей исследуют колебательный спектр молекул. Частота колебаний определяется главным образом массой колеблющихся атомов и их 6 163 [c.163]

    Методы колебательной спектроскопии — инфракрасной (ИК) и спектроскопии комбинационного рассеяния (КР) света широко применяются в качественном и количественном анализе жидких, твердых п газообразных фаз. Каждое соединение имеет свой собственный, индивидуальный, специфичный ИК-спектр гюглощения, отличающийся от ИК-спектра поглощения любого другого соединения. Нет двух таких различных веществ, которые имели бы одинаковые ИК-спектры поглощения во всем спектральном Ж-диапазоне. Если ИК-спектры поглощения двух или нескольких изучаемых объектов полностью совпадают, то это означает, что данные объекты представляют собой одно и то же вещество (одну и ту же форму соединения). Если же ИК-спектры поглощения двух [c.528]

    Инфракрасная спектроскопия (ИКС). С помощью инфракрасных лучей исследуют колебательный спектр молекул. Частоту колебаний определяют главным образом масса колеблющихся атомов и их груп-[шровок и жесткость химической связи. Последняя характеризуется так называемой силовой постоянной к, выражаемой в Н/м. [c.146]

    При псевдовращении два апикальных лиганда становятся экваториальными и одновременно два экваториальных лиганда — апикальными. Движущей силой этого процесса является переход хорошей уходящей группы из экваториального в апикальное положение и последующий ее уход. Такие искажения связей неудивительны, если вспомнить, что ковалентные связи не абсолютно жесткие они способны участвовать в колебательных и вращательных деформациях, что используется в инфракрасной спектроскопии. Можно представить, что во время псевдовращения две апикальные связи сближаются и образуют две новые эквато- [c.124]

    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИК спектроскопия), раздел мол, оптич. спектроскопии, изучающий спектры поглощения и отражения электромагн. излучения в ИК области, т.е. в диапазоне длин волн от 10 до 10 м. В координатах интенсивность поглощенного излучения-длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебат. уровнями осн, электронного состояния изучаемой системы (см. Колебательные спектры). Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом, строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. [c.250]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Исходя из предыдущего примера, можно ожидать, что в спектре смеси будет три сигнала, отвечающих протонам СООН-группы, воды и СНз-группы. Фактически в наблюдаемом спектре имеется только два пика. Положение пика СНд-группы не изменилось, но вместо сигнала протонов воды и карбоксильной группы наблюдается один пик в промежутке между ними — пик, отвечающий смеси. Почему для смеси наблюдается меньше линий, чем для суммы компонентов Почему в одних случаях смесь дает уменьшение числа пиков, а в других — нет Причина состоит в том, что в случае уксусной кислоты происходит реакция, которую мы обычно не замечаем, и не пишем ее уравнение. Она заключается в переходе протона воды в состав карбоксильной группы и, наоборот, легко диссоциирующий протон уксусной кислоты переходит в молекулу воды. Происходит так называемый протонный обмен. Протонный обмен является примером простейшей химической реакции. Его можно заметить и предсказать во всех деталях количественно с помощью ПМР-спектроскопии. По электронным и колебательным спектрам, т. е. в ультрафиолетовой и инфракрасной областях, это сделать не удается. Земетим, что спектр ПМР смеси уксусной кислоты и воды не является простой суммой ПМР спектров компонентов. [c.116]

    Исследуемое вещество облучают инфракрасными лучами с постепенно изменяющейся длиной волны и измеряют поглощение в зависимости от длины волны (или волнового числа). Таким образом получается абсорбционный спектр в инфракрасной области. Световые кванты поглощенного инфракрасного излучения возбуждают молекулу в более высокие колебательные и вращательные состояния. Поэтому эти спектры называют также колебательными или вращательно-колебательными. Инфракрасная спектроскопия применяется так же как метод идентификации соединений. Два вещества идентичны, если их спектры одинаковы в диапазоне волновых чисел от 700 до 1400 см . Эту область называют областью отпечатков пальцев (англ. fingerprint), поскольку не существует двух разных соединений, которые имели бы в этой области одинаковые спектры. [c.25]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]


Смотреть страницы где упоминается термин Спектроскопия инфракрасная колебательная: [c.18]    [c.8]    [c.617]    [c.10]    [c.241]    [c.308]    [c.94]    [c.68]    [c.451]    [c.251]    [c.114]   
Химия привитых поверхностных соединений (2003) -- [ c.21 , c.28 , c.30 , c.53 , c.126 , c.127 , c.128 , c.129 , c.133 , c.134 , c.177 , c.178 , c.183 , c.184 , c.190 , c.198 , c.204 , c.218 , c.219 , c.227 , c.286 , c.287 , c.288 , c.344 , c.346 , c.394 , c.395 , c.411 , c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопи

Спектроскопия инфракрасная

Спектроскопия колебательная



© 2024 chem21.info Реклама на сайте