Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Топлива из биомассы

    Использование биомассы в энергетических целях — комплексный процесс, включающий выращивание и сбор биологических веществ, различные методы их подготовки и переработки в жидкие, газообразные и твердые топлива. Биомасса является возобновляемым ресурсом, а переработка сельскохозяйственных, лесных и бытовых отходов способствует охране окружающей среды от загрязнений. [c.121]


    Непрерывный рост потребности в жидких моторных топл№ вах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. Одним из перспективных направлений является получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью той или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного [c.213]

    Среди альтернативных моторных топлив значимое место занимают такие кислородсодержащие продукты, как спирты и эфиры. Особенно перспективно применение метил-грег-бутилового эфира (МТБЭ) -эффективного высокооктанового компонента автобензинов (04 (И.М.) = 115-135]. Этот эфир прошел все испытания с положительными результатами, и во многих странах строятся, промышленные установки по его каталитическому синтезу из метанола и изобутилена. Из спиртов как самостоятельный вид топлива и как компонент моторных топлив наиболее перспективны метанол и этанол. Метанол привлекает прежде всего широкими сырьевыми возможностями. Его можно производить из газа, угля, древесины, биомассы и различного рода отходов. Безводный метанол хорошо смешивается с бензином в любых соотношениях, однако малейшее попадание воды вызывает расслаивание смеси. У метанола ниже теплота сгорания, чем у бензина, он более токсичен. Тем не менее метанол рассматривают как топливо будущего. Ведутся также исследования по непрямому использованию метанола в качестве моторных топлив. Так, разработаны процессы получения бензина из метанола на цеолитах типа ZSM. [c.215]

    Процессы получения белков [21, изображенные на рис. 6.1, а и б, различаются стадиями выделения и очистки биомассы. При работе на дизельном топливе необходима дополнительная ступень процесса - экстракция для извлечения остаточных углеводородов (не окисленных дрожжами или адсорбированных на них). [c.266]

    Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1,28 10 тонн УТ, в том числе, ископаемые угли 1,12-10 тонн, нефть 7,4-10 тонн и природный газ 6,3 10 тонн УТ. [c.58]


    Вместе с тем очевидно, что по мере возникновения технических и экономических предпосылок в транспортной энергетике постепенно будет возрастать роль природного газа, тяжелых нефтей и природных битумов, угля, горючих сланцев, биомассы и других нетрадиционных источников сырья для производства моторных топлив. Они объединяются в научной литературе понятием альтернативные источники сырья , в то время как топлива, которые получают на их основе, называют альтернативными моторными топливами . [c.6]

    Производство топлив из биомассы пока характеризуется низкой энергетической эффективностью. Это объясняется не только тем, что на выращивание, сбор и подготовку сырья расходуются значительные количества топлива и электроэнергии, энергоемкие удобрения, но и невысоким термическим к. п. д. процессов переработки. Энергетические затраты на получение этанола из различных видов биомассы составляют (ГДж/т) [134]  [c.125]

    Коммерчески освоенным методом является также ферментация сахарного тростника, пшеницы или картофеля. Сегодня основное внимание сосредоточено на возобновляемых источниках биомассы (морские водоросли, сельскохозяйственные культуры, древесина для производства этанола гидролизом, ферментацией илн дистилляцией) как сырья. Известна грандиозная бразильская программа производства газохола (смеси бензина со спиртом) или чистого этанола как заменителя автомобильного топлива на основе ферментации сахарного тростника. Она позволит отказаться от импорта нефтепродуктов. [c.232]

    Биомасса и углеводороды — одни из самых изобильных натуральных ресурсов энергии на Земле, несомненно вполне достаточных для осуществления обширных программ обеспечения все возрастающего автомобильного парка топливом на основе спиртов. Однако в Европе сторонникам спиртов как автомобильного топлива все еще не удается преодолеть оппозицию тех лиц, которые, кстати, до сих пор не используют и конкурирующий вид [c.232]

    Ок. 7% орг. продуктов Ф. человек использует в пищу, в качестве корма для животных, а также в ввде топлива и строит, материала Ископаемое топливо - тоже продукт Ф. Его потребление в кон. 20 в. примерно равно приросту биомассы. [c.175]

    Пример 2. Количество выбросов азота в месяц составляет около 2 млн. т. Сколько тонн азота поступит от сжигания топлива, от транспорта и от горения биомассы за год  [c.67]

    Решение. Из табл. 11 видно, что количество выбросов азота от сжигания топлива составляет 21 %, от транспорта - 14 %, от горения биомассы [c.67]

    Процесс промышленного получения витамина В)2 — пример безотходной и экологически чистой технологии. Сырьем для ее реализации служат массовые отходы, а конечными продуктами — биогаз (65 % метана, 30 % диоксида углерода), использующийся как топливо, и биомасса метановых бактерий — источник биологически активных соединений, активирующих, например, рост молочнокислых бактерий. [c.57]

    Чисто антропогенная эмиссия метана связана с добычей ископаемого топлива - угля, нефти и природного газа, - а также с процессами горения как ископаемого топлива, так и сырой биомассы. В последнем случае речь идет главным образом о степных и лесных пожарах, возникающих по воле или по вине человека. Как в выхлопе автомобилей, так и в дымовых газах от горения биомассы, метан - главный органический компонент. Ниже приведен состав парафиновых углеводородов С1-Св выхлопа автомобиля с бензиновым двигателем (млн ), показывающий, что на долю метана приходится около 60 % суммы этих компонентов  [c.109]

    Сжигание топлива и биомассы 40 20-80 [c.110]

    Поступление N0 , в атмосферу в настоящее время в равной мере связано с природными (выделение N0 почвами, образование N0 и NOj при грозовых разрядах и в химических реакциях возбужденных частиц в стратосфере) и антропогенными источниками. Антропогенная эмиссия N0 обусловлена главным образом окислением N2 при сжигании ископаемого топлива и биомассы. Общий поток N0 сейчас оценивается величиной (44 10) Мт N/год, из них (24 5) Мт N/год поступает из антропогенных источников (о глобальном биогеохимическом цикле азота см. разд. 2.4 и 6.2). [c.163]

    В заключение следует подчеркнуть, что существенные различия в строении и химическом составе древесины и коры обусловливают необходимость раздельной переработки этих составных частей биомассы дерева как с технологической, так и с экономической точек зрения. Однако существующие методы удаления коры (окорки) сопряжены с потерями древесины. В отходах окорки наряду с корой содержится значительное количество древесины, что осложняет химическую переработку такого сырья. Разнообразие представленных в коре химических соединений делает привлекательной идею извлечения наиболее ценных компонентов. Развитие данного направления утилизации коры сдерживается относительно низким содержанием извлекаемых компонентов. Вследствие этого основные направления переработки коры все еще ограничены ее утилизацией как органического материала в качестве топлива, в сельском хозяйстве и т.п. Редкие примеры использования коры отдельных древесных пород для вьще-ления дубильных веществ, производства пробки, получения дегтя (из бересты березы) и выделения из коры растущих деревьев пихты пихтового бальзама не улучшают, к сожалению, общую картину неэффективного использования содержащихся в коре ценных органических соединений. [c.210]


    Альтернативные моторные топлива. Непрерывный рост потребности в жидких моторных топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, получаемых из ненефтяного сырья. Одним из перспективных направлений является получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью той или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного топлива или в кислородсодержащие углеводороды - спирты, эфиры, кетоны, альдегиды, которые могут стать заменителем нефтяного топлива или служить в качестве добавок, улучшающих основные эксплуатационные свойства топлив, например, антидетонационные. К настоящему времени разработаны (или ведутся интенсивные исследовательские работы) многие технологии производства синтетических моторных топлив. В нашей стране ведутся исследования по получению моторных топлив из угля (прямым его ожижением или путем предварительной газификации в синтез-газе) в рамках специальной комплексной программы. [c.655]

    Энергетической программой намечено широкое использование нетрадиционных энергоносителей — солнечной, геотермальной, ветровой, приливной энергий, а таюке энергии биомассы. Годовое производство энергии за счет этих источников к концу XX в. составит в пересчете на условное топливо 20-40 млн.т. [c.10]

    Недавно опубликован обзор литературы о состоянии технологии производства этанола из биомассы и его экономике [30]. Этанол может служить жидким топливом, но предпочитают применять его в качестве добавки к бензину (10—25 %) или в смеси с дизельным топливом [77, 161]. Этанол служит одним из важнейших растворителей, а также рассматривается как перспективное сырье для производства этилена и бутадиена. При дегидратации этанола выход этилена может достигать 96 %, а при превращении в бутадиен 70 % [75]. Несмотря на высокую стоимость нефть пока еще остается [c.411]

    В современных условиях общественное воспроизводство требует вовлечения в хозяйственный оборот больших объемов сырья и энергии. В СССР, например, по риентировочным расчетам на каждый рубль произведенного национального дохода расходуется примерно 1 т природного вещества (воды, минерального сырья, топлива, биомассы, атмосферного кислорода). При этом масса готовой продукции составляет 1-1,5 % массы вещества, поступающего на переработку. Поэтому было бы ошибочным считать, что издержки технического прогресса, присущие капиталистическим странам, не коснулись социалистических стран, в частности СССР. Господствующая много лет вера в неисчерпаемость природных ресурсов страны, ошибки в планировании, безответственность и бесконтрольность нанесли и продолжают наносить невосполнимый ущерб окружающей среде. [c.6]

    Движение углерода в ходе его биогеохимическо-го круговорота обобщенно представлено на рис. 10.12. Основное количество этого элемента на Земле связано в минералах типа карбонатов, ископаемом топливе, биомассе и МОВ. Однако в последнее время происходит усиленное выделение углерода в атмосферу в форме его диоксида (углекислого газа), главным образом при сжигании ископаемого топлива при этом изъятие диоксида углерода из атмосферы замедляется в результате широкомасштабного процесса сведения лесов (разд. 10.8.3). [c.420]

    Альтернативные моторные топлива. Непрерывный рост пот — ребности в жидких моторных топливах и ограниченность ресурсов нефти обусловливают необходимость поисков новых видов топлив, )юлучаемых из ненефтяного сырья. Одним из перспективных направлений являстся получение моторных топлив из таких альтернативных источников сырья, как уголь, сланец, тяжелые нефти и природные битумы, торф, биомасса и природный газ. С помощью ой или иной технологии они могут быть переработаны в синтетические моторные топлива типа бензина, керосина, дизельного топ —. 1ива или в кислородсодержащие углеводороды — спирты, эфиры, 1сетоны, альдегиды, которые могут стать заменителем нефтяного [c.280]

    Кикробиологам необходимо изыскать штаммы дрожжей, которые бы успешно окисляли содержащиеся во фракциях дизельного топлива н-алканы, выкипающие в интервале 200-360 С. Это позволит расширить ресурсы сырья для получения биомассы и получать низкозастывающее топливо вместо его компонента, что существенно снизит себестоимость белков. [c.268]

    Первичные энергетические ресурсы с точки зрения возможности их использования для получения моторных топлив могут быть разделены на две большие группы. К первой следует отнести ПЭР, которые могут быть непосредственно использованы для производства топлив. Они включают все горючие ископаемые и биомассу. Ко второй группе относят остальные первичные энергоресурсы, которые не могут быть использованы для непосредственного производства топлив, но способствуют расширению сырьевой базы для их получения. Влияние этих энергетических ресурсов сказывается опосредственно, через экономию органических топлив, замещаемых альтернативными видами энергии. Например, атомная электростанция мощностью 1000 МВт позволяет ежегодно экономить около 2 млн. т органического топлива в условном исчислении, которое может быть использовано для производства моторных топлив. Аналогичным приме- [c.14]

    Переработка таких видов сырья, как уголь, горючие сланцы природные битумы и биомасса, сегодня представляется как новое, перспективное направление для удовлетворения растущей потребности общества в моторных топливах и химическом сырье. Тем не менее для большинства из них технология переработки имеет давнюю, порой многовековую историю. Например, газификация угля впервые была осуществлена более двух столетий тому назад история переработки и топливного использования горючих сланцев восходит также к ХУП1 в. давно известны и широко используются методы получения-спиртов и других химических веществ из биомассы и природного газа, а процессы ожижения угля имели достаточно широкое промышленное применение в 1930—1940-х годах. Поэтому, рассматривая сегодня производство жидких и газообразных топлив из различных, альтернативных нефти, сырьевых источников, правильнее говорить не об открытии, а о возрождении процессов в условиях новой ресурсной ситуации и современного уровня развития науки и техники. [c.61]

    Превращение биомассы в топлива, пригодные для непосредственного использования, осуществляется термохимическими или биохимическими процессами. К термохимическим процессам переработки относятся прямое сжигание, пиролиз, газификация и экстракция масел, к биохимическим — ферментация и анаэробное разложение. Перед переработкой биомасса обычно проходит стадии подготовки, включающие измельчение, сущку и др. При переработке биомассы в моторные топлива наибольший интерес представляет газификация с получением синтез-газа (преобразуемого затем в метанол или углеводороды), а также ферментация с получением этанола. Процесс получения синтез-газа во многом аналогичен газификации угля (см. раздел 3.2). При газификации древесины при 300 °С в присутствии кислорода образуется в основном диоксид углерода. При повышении температуры до 600 °С получают смесь, в которой помимо СОг присутствуют водород, оксид углерода, метан, пары спиртов, органических кислот и высших углеводородов. Выход газообразных продуктов при этом не превышает обычно 40% (масс.) на сырье. В связи с меньшими энергетической плотностью и теплотой сгорания биомассы газификация ее менее эффективна, чем газификация угля. Поэтому, несмотря на проводимые во многих странах исследовательские и конструкторские [c.121]

    Исследования биоповреждаемости органических жидкостей и топлив показали, что в основном меняются их кислотность и оптическая плотность. Причем об изменении этих характеристик можно судить по критерию наличия биомассы отсутствие ее — топливо устойчиво, количество биомассы до 0,7 г/л — умеренное поражение, св. 0,7 г/л — интенсивное поражение микроорганизмами (см. табл. 14). Испытания проводят по методу инкубации смеси топлива с водноминеральной (питательной) средой и определенными видами микроорганизмов. Условия — благоприятные для развития тест-культур [32, с. 67]. [c.76]

    Биогаз — это смесь из 65 % метана, 30 % СО2, 1 % сероводорода и незначительных примесей азота, кислорода, водорода и угарного газа. Энергия, заключенная в 28 м биогаза, эквивалентна энергии 16,8 м природного газа 20,8 л нефти 18,4 л дизельного топлива. В основе получения биогаза лежит процесс метанового брожения, или биометаногенез — процесс превращения биомассы в энергию. [c.21]

    Человечество, естественно, пытается изыскивать методы замень нефтепродуктов как топлива. Например, переработкой угля в углево дороды или из так называемого возобновляемого сырья. Метанол, эта НОЛ или ацетон-бутанольную смесь получают либо нагреванием дс 1000 С без кислорода, либо ферментативным брожением древесины сахарного тростника, маниоки, биомассы из отходов сельского хозяй ства. В Бразилии в качестве топлива уже сжигают несколько миллио нов тонн этанола и метанола в год. Во всем мире метанола сейчас производят под 30 млн. т в год. В США химики уже считают своими ежегодно около 2 млрд. тонн навоза для переработки в искусственную нефть, метанол и т.д. [c.13]

    Главными по содержанию в атмосферном воздухе восстановленными соединениями являются метан, глобальный бюджет которого рассмотрен в главе 3, и монооксид углерода. Концентрации СО в атмосфере обычно находятся в пределах 0,05-0,20 млн Ч Образование монооксида углерода связано с окислением метана в атмосфере и сжиганием ископаемого топлива. Его содержание в отработавших газах автомобилей с бензиновыми двигателями может достигать 5 %, а дизельных - 0,5 % по объему. Глобальная антропогенная эмиссия СО за счет сжигания ископаемого топлива оценивается в 640 Мт/год. Значительный вклад (350 Мт/год) вносит также сжигание биомассы, главным образом в саваннах и тропических лесах (Левайн, 1995). Как видно, по физическим масштабам эмиссия СО не уступает эмиссии метана или даже превосходит ее. [c.172]

    В настоящее время промышленные установки на основе метанола и нефти с производительностью до 100 ООО т биомассы в год работают в СССР, Италии, Англии и Японии [16]. В ГДР сооружена установка с производительностью 55 ООО т/год (производство фермозина), использующая в качестве сырья фракщ(и дизельного топлива. [c.342]

    Для расширения энергопроизводства используют многие природные явления солнечную радиацию, теплоту вод океана и земных недр, силу рек, приливов и отливов, океанских те- чений, высотных воздушных потоков, невозобновляемые природные виды топлива (уголь, нефть, газ) и возобновляемые (биомасса растений), теплоту микробиологической утилизации органи- ческих отходов, фотосинтез, цепные реакции деления атомного ядра и термоядерный синтез. И хотя доля нетрадиционных источников энергии непрерывно растет, 95% всех энергетических потребностей мира пока удовлетворяется за счет сжигания углеродсодержащих природных ископаемых (нефть, газ и уголь). По оценке специалистов к 2020 г. их доля в мировом балансе будет составлять половину всех энергозатрат. [c.77]

    Эти процессы основаны на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, пpeимyщe- ственно нормального строения в качестве источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления алканов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового белка. Депарафинизат используют как компонент зимнего дизельного топлива. [c.325]

    В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди них достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и третбути-ловый (ТБС) спирты, и особенно метилтретбутиловый эфир (МТБЭ), обладающие (табл. 11.8) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Из спиртов наиболее широкими сырьевыми ресурсами обладает метанол. Его можно производить из газа, угля, древесины, биомассы и различного рода отходов. Безводный метанол хорошо смешивается с бензином в любых соотношениях, однако малейшее попадание воды вызывает расслаивание смеси. У метанола ниже теплота сгорания, чем у бонзина, он более токсичен. Тем не менее метанол рассматривают как топливо будущего. Ведутся также исследования по непрямому использованию метанола в качестве моторных топлив. Так, разработаны процессы получения бензина из метанола на цеолитах типа ZSM. [c.656]

    Производство биогаза осуществляется в результате метанового брожения , или биометаногенеза, — давно известного процесса превращения биомассы в энергию. Метаногенез открыт в 1776 г. Вольтой, установившим наличие метана в болотном газе. Последний содержит 65% СН4, 30 — СО2, 1% НгЗ и незначительное количество N2, О2 и СО2. Один м биогаза в нормальных условиях по теплотворной способности эквивалентен 0,6 нм природного газа, 0,75 л нефти или 0,65 л дизельного топлива. [c.324]


Смотреть страницы где упоминается термин Топлива из биомассы: [c.50]    [c.265]    [c.282]    [c.28]    [c.267]    [c.121]    [c.189]    [c.13]    [c.301]    [c.31]    [c.36]    [c.639]    [c.181]   
Смотреть главы в:

Моторные топлива из альтернативных сырьевых ресурсов -> Топлива из биомассы




ПОИСК





Смотрите так же термины и статьи:

Биомасса



© 2025 chem21.info Реклама на сайте