Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические теории оптического вращения

    ФИЗИЧЕСКИЕ ТЕОРИИ ОПТИЧЕСКОГО ВРАЩЕНИЯ [c.293]

    Впервые физическая теория оптического вращения, пригодная для объяснения опытного материала, была предложена в 1929 г. Куном [86]. В развитии ее прикладной стороны большое участие принял Фрейденберг [87]. В последующие несколько лет начиная с 1927 г. [88] были предложены и квантово-механические теории оптического вращения (см. обзор [89]). С 40-х годов началась интенсивная разработка теорий оптического вращения, учитывающих зависимость последнего от строения возможных поворотных изомеров и в первую очередь наиболее устойчивого изомера [90 91, стр. 241 и сл.]. [c.89]


    Физические теории оптического вращения [c.482]

    Физическая теория оптического вращения должна дать ответ на вопрос почему возникает циркулярное двойное лучепреломление и как следствие его—оптическая активность Этот вопрос по существу и не ставился в классической трактовке Френеля, так как этот вопрос выходил за пределы представлений волновой оптики, в рамках которой построено Френелем рассмотрение явлений оптической активности. Ответ на поставленный вопрос надо было искать, рассматривая процесс взаимодействия света с веществом. [c.482]

    Общие физические положения, развитые выше, в совместных работах Куна и Фрейденберга были успешно применены к конкретному материалу. В опубликованной в 1933 г. статье Фрейденберг подробно рассмотрел полуколичествен-ные закономерности оптического вращения в свете теории Куна [97]. [c.296]

    Оптическое вращение зависит от относительного расположения в молекуле центра асимметрии и хромофора, создающего оптически активную полосу поглощения. Так в теории Куна получило физическое обоснование задолго до этого созданное правило положения Чугаева (см. стр. 286). В качестве примера Кун использовал данные об оптической активности карбинолов, содержащих в разных положениях поглощающие заместители. Для самих карбинолов конфигурации ХЫХ и их производных с удаленным от асимметрического центра вторым заместителем (соединения Ь) наблюдается правое вращение. Если же заместитель с новой полосой поглощения располагается ближе к асимметрическому центру (в р-положении — ср. стр. 287), то знак вращения у соединений Ы и Ы1 меняется — эти вещества левовращающие. [c.297]

    Метод дисперсии оптического вращения (сокращенно ДОВ) находит широкое применение для исследования оптически активных полимеров По ряду причин, которые будут рассмотрены ниже, этот метод оказывается наиболее информативным при изучении поведения белков и полипептидов в растворе. Поэтому будет рассмотрена в основном ДОВ этих полимеров. Физические основы и теория явления ДОВ достаточно подробно рассмотрены в книге Дисперсия оптического вращения  [c.119]

    Оптическое вращение тем больше, чем ближе друг к другу расположены в молекуле центр асимметрии и группа, вызывающая поглощение (хромофор), т. е. факторы, при взаимодействии которых возникает оптическая активность. По мере удаления их друг от друга ослабевает взаимодействие, а вместе с ним уменьшается и вращение. Так в теории Куна находит физическое обоснование правило положения", сформулированное задолго до этого Чугаевым (сравни стр. 495). [c.487]


    Молекулярная асимметрия — условие оптической активности. Стереохимическая теория не является физической теорией явления оптического вращения. Она устанавливает лишь структурные условия, которым должно подчиняться вещество для того, чтобы обладать оптической активностью. [c.30]

    Л. Пастером (1860 г.) было показано, что оптическая активность органических соединений является результатом их асимметрического строения. Однако лишь тетраэдрическая теория Я. Вант-Гоф-фа и А. Ле-Беля (1874 г.) позволила объяснить явление оптической активности. Физический механизм вращения плоскости поляризации света асимметричной молекулой заключается в поглощении ею кванта света, перехода электрона на уровень с большей энергией, образовании на месте этого ушедшего электрона пробела ( дырки ), к которому будут винтообразно двигаться электроны из других частей молекулы. Направления вращения этого электронного потока противоположны для правого и левого изомеров. Это вращательное движение электронов создает добавочную магнитную компоненту в световой волне, испускаемой молекулой, что и приводит к вращению плоскости поляризации. [c.184]

    Использование физических методов позволяет исследовать основные вопросы теории химического строения, такие, как последовательность и кратность химических связей, структурная, оптическая и конформационная изомерия, координационное число атомов, взаимное влияние атомов и групп атомов в молекуле, внутреннее вращение молекул и другие движения с большими амплитудами, энергетические, электрические и другие молекулярные характеристики, промежуточные продукты и механизмы реакций, структура конденсированных фаз и т. д. [c.13]

    Физическая теория оптического вращения должна дать ответ на вопрос почему возникает круговое двойное лучепреломление (неравенство коэффициентов поглощения левого и правого циркулярно-поляризованного света) и, как следствие его, оптическая активность Ответ на поставленный вопрос надо искать, рассматривая взаимодействие сйета с веществом. [c.293]

    Особое место занимает статья Брюстера, в которой представлена новая теория оптической активности. Автор 10 лет назад предложил оригинальную систему расчета оптического вращения. Новая теория значительно отличается от ранее существовавигей, в первую очередь тем, что в ней более ясно очерчены физические основы, а также ее более широкой применимостью. Б то же время новая теори.ч сохраняет сильные стороны старой, а именно большое значение, придаваемое конформационному фактору, и простоту вычислений, которая позволяет рассчитывать вращение сложных структур. Хорошее согласие с экспериментом, достигаемое во многих случаях, несомненно, должно привлечь внимание исследователей. В первую очередь необходимо установить условия, при которых теория согласуется с экспериментальными данными. [c.6]

    В этой главе представлена другая группа методов, позволяющих исследовать как конформацию макромолекулы или комплекса с участием макромолекулы в растворе, так и взаимодействия макромолекул. Хотя значительную информацию такого рода дает абсорбционная спектроскопия, изучая взаимодействие с веществом поляризованного света, т. е. используя методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) (быстрые и применимые к растворам), можно получить еще более ценную информацию (несмотря на то, что теория метода и применяемые приборы более сложны по сравнению с абсорбционной спектроскопией), С помощью этих методов измеряют в зависимости от длины волны способность оптически активного хромофора вращать плоскополяризованпый свет (ДОВ) и по-разному поглощать поляризованный по кругу вправо и влево свет (КД). В основе ДОВ и КД лежат одни и те же физические законы, и фактически оба эти метода представляют собой просто два разных способа изучения одного и того же явления взаимодействия поляризованного света с оптически активными молекулами. Так как оптически активные центры содержатся в большинстве биологических молекул, для изучения последних могут с успехом применяться методы ДОВ и КД. [c.450]

    С помощью ДОВ и КД можно исследовать механизм действия комплексных катализаторов при условии, что они содержат асимметрические группы 644]. Этими методами также можно исследовать стереохимический механизм роста цепи [645—647]. Недавно описан факт изменения знака вращения оптически активного полипропи-леноксида в различных растворителях. Обсуждение этого явления с точки зрения диэлектрической теории растворов приводит к выводу, что в таких случаях форма кривых ДОВ полимеров не может быть связана с их конформацией [648]. Так как высокостереорегулярные полимеры получаются сравнительно редко, одной из главных задач при изучении синтетических полимеров является определение их химического строения. И только тогда, когда структурные вопросы разрешены, для изучения стереохимии можно использовать оптические методы. Синтетические высокополимеры остаются, однако, областью, в которой методы ДОВ и КД будут иметь большое значение в будущем, так как хироптические свойства помогут выяснить конформационные вопросы, на которые нелегко ответить с помощью других физических методов. [c.98]


    Формула (4.15) теории РРКМ для ка Е ) относится к скорости реакции при единственном пути перехода от молекулы реагента к продуктам. Часто оказывается, что имеется несколько путей, которые физически различны, но полностью эквивалентны с точки зрения расчета скорости. Такие пути реакции включают активированные комплексы, которые являются геометрическими или оптическими изомерами. Если начертить диаграммы, показывающие движения различных атомов в процессе реакции, то диаграммы для различных путей также будут геометрически или оптически изомерны. В этом случае рассчитанная скорость должна быть увеличена на соответствующий множитель, известный как статистический множитель, или степень вырождения пути реакции, что обозначается здесь как . Эти термины не всегда употребляются в одном и том же смысле, однако различие обычно ясно из контекста. Множитель входит в константу скорости ка Е ) образования активированных комплексов из активных молекул [формула (4.16)] и дважды в окончательное уравнение для в знаменателе как сомножитель в каИ перед всей формулой [уравнение (4.17)]. В теории абсолютных скоростей этот множитель обычно выводится из отношения о/а чисел симметрии вращений (и внутренних, и молекулы как целого) А и А . Следовательно, в обычной формулировке можно записать [c.89]

    Следует отметить, что во всех современных теориях не было сделано попытки объяснить явление оптической активности на основе элементарных физических процессов в молекуле. Вместо этого вращательная способность выводилась из неэлементарвда свойств, например из рефракций различных атомов или атомных групп в молекуле. Например, такими методами [331 оказалось возможным рассчитать приблизительную величину оптиче- ского вращения некоторых простых молекул, особенно при учет [c.198]


Смотреть страницы где упоминается термин Физические теории оптического вращения: [c.4]    [c.6]    [c.6]   
Смотреть главы в:

Стереохимия -> Физические теории оптического вращения

Основы стереохимии -> Физические теории оптического вращения




ПОИСК







© 2025 chem21.info Реклама на сайте