Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый ангидрид образование

    Для алкилирования изобутанов олефинами наиболее широко применяется серная кислота в оптимальной концентрации 94— 96% (масс.). Применение более концентрированной кислоты нежелательно, так как приводит к окислению углеводородов и другим сложным процессам, в результате которых продукт осмоляет-ся, из реакционной массы выделяется сернистый ангидрид и выход алкилата уменьшается. Следует избегать и чересчур низких концентраций кислоты, так как они способствуют полимеризации олефинов и образованию соответствующих алкилсульфатов. Последние при нагревании разлагаются с образованием коррозионно-агрессивной разбавленной серной кислоты. [c.304]


    Способность олефинов к полимеризации следует тому же порядку, в каком они расположены по их склонности к образованию алкилсерных кислот, а именно этилен < пропилен < н-бутилены < изобутилен и другие третичные олефины. Образованию полимеров благоприятствует повышение концентрации кислоты и увеличение температуры. Для каждого отдельного олефина существуют известные пределы температуры и концентрации кислоты, которые нельзя переходить без того, чтобы не увеличилось образование полимеров, а в особо жестких условиях, чтобы не усилилась тенденция к осмолению и к выделению сернистого ангидрида. В табл. 34 указаны условия гидратации различных олефинов серной кислотой. Варьируя время реакции, можно дополнительно изменять эти условия. [c.140]

    При окислении З-метилбутанола-2 (сопровождаемого образованием сернистого ангидрида) получается в качестве побочного продукта 3-ме-тилбутанон-2. [c.224]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Реакционную смесь оставляют на ночь п])и 65° для завершения реакции образования сложного эфира сернистой кислоты, а затем 24 часа кипятят при 90° с обратным холодильником для разложения сложного эфира с отщеплением сернистого ангидрида. [c.195]

    Затем оставшиеся 2/3 сероводорода взаимодействуют на катализаторе с полученным сернистым ангидридом до образования серы  [c.102]

    Предложенный им метод основан на взаимодействии окислов металлов и металлов с парами серы при 400—1000°. При этом свободный металл и металл, связанный с кислородом, переходят в сульфид, а кислород связывается с серой в сернистый ангидрид. Образование сульфида облегчает сдвиг равновесия, особенно нри малом содержании кислорода. Определение сернистого ангидрида может быть выполнено с большой чувствительностью и надежностью. Упомянутый метод позволяет определять кислород не только во всей взятой пробе, но и отдельно, в поверхностных слоях металла. Применяемая при этом аппаратура проще, чем при других методах. [c.151]


    Наиболее важным этапом создания процесса является разработка катализаторов, которые должны отвечать как общим требованиям, предъявляемым катализаторам - высокая активность, стабильность, механическая прочность и термическая устойчивость и т.д., так и обладать специфическими свойствами, а именно, селективно превращать сероводород в элементную серу без образования сернистого ангидрида и других побочных продуктов быть инертным по отношению к углеводородам и не отравляться ими. Рядом зарубежных фирм, а также отечественными специалистами разработаны катализаторы, прошедшие опытные и промышленные испытания. К ним относятся оксидные катализаторы на основе дешевого и доступного сырья, технология изготовления их простая и не требует дорогостоящего оборудования. Высокая активность и стабильность катализатора позволяет вести процесс при времени контакта в 4-5 раз меньше, чем по традиционной технологии Клауса, обеспечивая за счет этого резкое уменьшение металлоемкости и габаритов установок. [c.172]

    Воздух, пройдя компрессию до 5 атм и охладившись в теплообменниках, поступает в сушильную башню, где освобождается от влаги. После подогрева он поступает в печь для сжигания серы. На выходе из печи объемная доля сернистого ангидрида составляет 12%. Пройдя котел-утилизатор, в котором генерируется перегретый пар Р = 40 атм), газ охлаждается и последовательно проходит три слоя контактной массы (между слоями газ охлаждается в теплообменниках). После охлаждения до 200° С газ поступает на промежуточную абсорбцию, где отводится основное количество сернистого ангидрида, что способствует смещению равновесия реакции окисления сернистого ангидрида в сторону образования серного ангидрида. После подогрева газ поступает еще на один слой катализатора, после чего идет на окончательную абсорбцию и затем на возвратную турбину газотурбинной установки. [c.609]

    Это объясняется тем, что при сульфировании сополимера, предварительно набухшего в дихлорэтане, наблюдается наличие пленки дихлорэтана вокруг гранулы сополимера, которая очень ограниченно смешивается с серной кислотой и толщина которой обусловливает внешнедиффузионное сопротивление потоку серной кислоты в гранулу. В случае, когда сульфированию подвергается сополимер, предварительно набухший в тионилхлориде, пленка, обволакивающая гранулу сополимера, отсутствует, так как тио-нилхлорид хорошо смешивается с серной кислотой и частично расходуется при взаимодействии с водой, выделяющейся в результате реакции сульфирования сополимера с образованием хлористого водорода и сернистого ангидрида (газообразные продукты), которые диффундируют и растворяются в серной кислоте. [c.360]

    Избыток кислорода нарушает стехиометрическое соотношение HjS SO2 = 2 1 кроме того, способствует образованию сернистого ангидрида SO3, который дезактивирует катализатор, образуя А12(804)з, т.е. происходит сульфатация катализатора. [c.96]

    Поток газа, содержащий диоксид углерода, сероводород и сернистый ангидрид, а также пары серы и воды, выходит из реактора первой ступени, охлаждается в одной секции теплообменника, состоящего из двух отделений. Сконденсировавшаяся сера стекает по мере образования в хранилище серы. Газ, из которого удалено более 70 % серы, смешивается с проходящим по байпасу воздухом и направляется в реактор второй ступени большего объема, где все реагирующие компоненты находятся в состоянии равновесия при более низких температурах, чем в аппарате первой ступени. [c.104]

    При введении воды иа образование серной кислоты расходуется около половины всего сернистого ангидрида. В случае низших гомологов после первичного облучения процесс протекает самопроизвольно, а ири реакции с высшими углеводородами даже без введения воды необходимо постоянное освещение реакционной массы. [c.121]

    Реакции сернистых соединений. Сероводород окисляется с образованием элементарной серы и сернистого ангидрида  [c.316]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]


    Коррозионное расслоение металла нефтеаппаратуры возможно не только в присутствии сероводорода, но и при наличии в дренажных водах продуктов его нейтрализации — растворимых сульфидов. Источником электрохимической коррозии на указанных установках являются хлориды, а также сернистый ангидрид. Эта коррозия сопровождается образованием отложений, отравляющих катализатор, и усиливается при температурах ниже 205 С. [c.199]

    Для подтверждения значимости экологического фактора были выполнены расчеты по одному из производственных объединений — типичному с точки зрения уровней воздействия на окружающую среду и природоохранной деятельности, характеризующемуся следующими показателями. Добыча 1 т угля сопровождается выбросами в атмосферу 1,2-1,3 кг вредных веществ, основную массу которых составляют оксиды углерода — 40% и сернистый ангидрид — 26% сбросом около 4,5-5 м загрязненных сточных вод, состав которых характеризуется 2—3-кратным превыщением ПДС по взвещенным веществам и хлоридам, 10-15-кратным — по сухому остатку и сульфатам образованием [c.209]

    Процесс Комиико основывается на абсорбции SO2 водным раствором сульфита аммония н десорбции сернистого ангидрида добавкой серной кислоты к раствору с образованием сульфата аммония в качестве побочного продукта (удобрение). [c.195]

    Способ ВНИИТНефти хотя и более простой, является в то же время и менее точным, очевидно, в связи с тем, что сернистый ангидрид не успевает полностью поглотиться раствором соды, в то время как применение таких энергичных окислителей, как йод или перекись водорода, дает достаточную гарантию перевода всего количества SO2 в серный ангидрид, полностью поглощаемый водой с образованием серной кислоты. [c.410]

    Для выделения кислоты кислые отбросы необходимо подвергнуть-кипячению с водой, сопровождающемуся растворением сульфок.ис.лот, солей азотистых оснований и смолообразных продуктов. Эти продукты, сообщаюпще кислоте темное окрашивание, при концентрации окисляются ею с образованием сернистого ангидрида. [c.196]

    Процесс Модоп. Процесс отличается высокой селективностью в конверсии углеводородсодержащих соединений серы. Такая селектив-ность процесса достигается благодаря применению оксиднотитанового катализатора, на котором сероводород может превращаться в серу, взаимодействуя со стехиометрическим количеством воздуха с образованием лишь следов сернистого ангидрида при полном отсутствии серного ангидрида. Катализатор Ск -31, применяемый в процессе, на 80% состоит из диоксида титана и сохраняет высокую активность в течение многих лет непрерывной работы [1]. [c.176]

    Новый катализатор состоит из носителя, на которьм нанесен оксид активного металла. Он обеспечивает полную конверсию сероводорода в элементную серу при ничтожно малом образовании сернистого ангидрида даже в присутствии избыточного воздуха. Катализатор не чувствителен к высоким концентрациям воды в технологическом газе, не катализирует окисления окиси углерода, водорода, метана и образования карбонилсульфида и сероуглерода, обладает химической и термической стабильностью и достаточной механической прочностью. [c.179]

    Удаление серосодержащих отходов — проблема, аналогичная удалению галогеноорганических отходов. При сжигании серосодержащих отходов сера окисляется до сернистого ангидрида, а при достаточном избытке воздуха — до серного ангидрида. Оба эти окисла могут абсорбироваться в насадочной колонне раствором каустической или кальцинированной соды с образованием сульфита или бисульфита натрия. Другим способом удаления серы служит впрыск в зону горения водного раствора каустической или кальцинированной соды. [c.139]

    Каталитическое окисление сернистого ангидрида в серный — основной процесс в производстве серной кислоты. В контактном способе производства серной кислоты [1] сернистый газ обычно получают обжигом сульфидных руд или сжиганием серы. Затем газ тщательно очищают от пыли, тумана серной кислоты и контактных ядов, сушат и подают компрессорами в контактное отделение. В контактном отделении газ подогревается в теплообменниках до температуры зажигания катализатора и проходит в контактных аппаратах через слои катализатора. На катализаторе идет окисление 802 кислородом, содержащимся в исходном газе. Далее газ, содержащий 80з, охлаждается в теплообменниках сначала исходным газом, затем воздухом. Серный ангидрид поглощается серной кислотой с образованием олеума или моногидрата Н2804. [c.139]

    В ряде случаев время достижения катализатором стационар-.ного состояния велико, и он в течение длительного срока сохраняет свойстаа, отличные от свойств, характерных для равновесия системы. Этим объясняется наличие гистерезисной петли на кривых активности катализатора (рис. 7)..При повышении температуры образование нового более активного соединения и соответственный рост константы скорости характеризуется нижней кривой петли а при понижении — верхней. Такой характер кривых наблюдается в частности при окислении сернистого ангидрида [13]. [c.41]

    Раствор нитрита аммония обрабатывается далее аммиаком и сернистым ангидридом с получением гидроксиламиндисульфоната, который при повышенной температуре гидролизуется с образованием сернокислого гидроксиламина  [c.306]

    Достоинством газообразного топлива является то, что его можно легко очистить от сернистых соединений. Образование сернистого ангидрида при сжигании газообразного топлива может быть сведено к минимуму. Ресурсы газообразного топлива на НПЗ зависят от технологической схемы предприятия, степени оснащения газоперерабатывающими производствами. На многих заводах из-за отсутствия системы сбора и переработки газов сжигается в трубчатых печах такое ценное химическое сырье, как пропан, пропилен, бутаны и бутилены. Например, на одном из нефтеперерабатывающих заводов, где мощности по утилизации газа недостаточны, а на переработку поступает нефть с высоким содержанием легких углеводородов, в течение нескольких лет общий расход топлива составлял 650—700 тыс. т/год, в том числе газа — 450—500 тыс. т/год и мазута 150—200 тыс. т/год. На другом НПЗ до строительства газофракционирующей установки (ГФУ) предельных газов 90% общей потребности в топливе покрывалось за счет сжигания газа. После того, как строительство ГФУ было заверщено, в топливную сеть стали поступать только так называемые сухие газы, содержащие метан, этан и небольшое количество пропана, п топливный баланс завода изменился. Газом обеспечивается не более 30% потребности в топливе. [c.274]

    Из сказанного ни в коем случае нельзя сделать вывод, что в случае очищенных нефтепродуктов вредны только активные сернистые соединения. Сернистые соединения с нейтральной функцией и здесь играют отрицательную роль, так как во многих случаях нефтепродукты применяют при высокой температуре, вызывающей образование акисвпых соединений серы в результате распада неактивных или сжигают нри этом нри наличии воды, наряду с прочими продуктами сгорания образуется сернистый ангидрид, сильно корродирующий металлические иоверхности. [c.383]

    Весьма существенное влияние на скорость коррозии и механизм образования продуктов окисления оказывает загрязненность атмосферы. Наибольшую опасность представляет сернистый ангидрид (ЗОг) и на порядок меньшесоли хлоридов. Продукты коррозии, вследствие своей гигроскопичности и рыхлой структуры, поглощают ИЗ воздуха 502, который взаимодействует с железом с образованием сульфита и сульфата закиси железа. Обе соли окисляются на воздухе и гидролизуются в воде с образованием окислов железа и серной кислоты по схеме [c.189]

    Был предложен тажже более сложный метод, заключающийся в восстановлении сернистого ангидрида, адсорбированного на силикагеле, водородом с последующим образованием молибденового голубого [1]. Были предложены и другие методы, основанные на окислении ЗОг до 50з и последующем определении образующейся серной кислоты, но в настоящее время наиболее широко применяемыми аналитическими методами являются методы ЕОТА. [c.80]

    Ди-н-пропилсульфат бурно реагирует со спиртовым раствором едкого кали, образуя этил-к-пропиловый эфир [460]. С фенолятом натрия с выходом 66% дает фенил-н-пропиловый эфир [321, 462]. Нагревание ди-м-пропилсульфата при 170° ведет к его разложению и выделению пропилена, а также некоторого количества сернистого ангидрида и других продуктов. Пропилен при разложении получается с выходом 38%. С перекисями щелочных металлов [461] ди-м-пропилсульфат реагирует с образованием неустойчивой гидроперекиси пропила, выделенной в виде бариевой соли с ацетилени-дом натрия дает к-пропилацетилеп [321]. [c.81]

    Довольно обстоятельно исследована сложная реакция между пиросульфурилхлоридом и толуолом [54]. При 60° выделяется большое количество хлористого водорода и несколько меньшее количество сернистого ангидрида. В продукте реакции содержится п-толуолсульфокислота, не идентифицированный хлорсульфон,, л-толуолсульфохлорид и смесь нескольких изомеров дихлорто-луола. Образование сульфокислоты и сульфохлорида может быть объяснено на основании следующих реакций  [c.16]

    Сульфохлориды реагируют не только как типичные хлорангидриды, но во многих случаях как хлорирующие агенты и окислители и поэтому число известных их реакций довольно вeJшкo. Они сравнительно устойчивы из ароматических сульфохлоридов лишь антрахинон-1-сульфохлорид разлагается при стоянии с выделением сернистого ангидрида и образованием 1-хлорантра-хинона [58]. [c.279]

    Многие олефины взаимодействуют с сернистым ангидридом, образуя полимеры, называемые полисульфонами, которые являются исходными для производства формующихся пластмасс с высокими механическими и электрическими свойствами. Реакция протекает при низких температурах и использовании в качестве катализатора света или таких веществ, как бензоил пероксид и нитрат серебра. Предельные температуры (в °С) образования полисульфонов из СНГ следующие изобутан — 4, транс-бутен-2 — 33, цис-бутен-2 — 36, бутен-1—63, пропилен — 87. Однако эти продукты термически неустойчивы и не имеют коммерческого спроса. [c.44]

    При свободнорадикальном инициировании реакции хлорирования полиэтюена в присутствии сернистого ангидрида образуется полимер, содержащий большое количество хлора и небольшое количество сульфохлоридных групп (-302С1). Заместители расположены вдоль цепей более или менее регулярно. Написать наиболее вероятную схему этих реакций замещения. Какими физичe ки ш свойствами должен обладать сульфохло-рированный полимер, если замещение доведено до такой степени, при которой одна замещенная группа приходится на 50 -100 метиленовых групп Возможно ли образование "сшитых" полимеров  [c.286]


Смотреть страницы где упоминается термин Сернистый ангидрид образование: [c.118]    [c.527]    [c.125]    [c.68]    [c.178]    [c.70]    [c.38]    [c.17]    [c.12]    [c.124]    [c.137]    [c.56]    [c.649]    [c.36]   
Технология минеральных удобрений и кислот (1971) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Сернистый ангидрид

Сернистый газ сернистый ангидрид



© 2025 chem21.info Реклама на сайте