Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранные процессы диффузионно-мембранные

    Можно допустить, что термодинамическое совершенство процесса разделения в реакционно-диффузионных мембранах также окажется функцией величин Ф,, а,/, х и 1Х Аг. Если использовать значения ац и Л1 = Ф,Л,-, то потери эксергии в мембранах такого типа можно вычислить по уравнениям (7.47) и (7.52), эксергетический к. п. д. проницания по соотношениям (7.54) —(7.56), (7.64) и (7.66), приведенные плотности проникшего целевого и суммарного потоков — по уравнениям (7.58), (7.59) и (7.67), состав проникшего потока по выражениям (7.62) и (7.65). Применимость соотношений несопряженного массопереноса для расчета эффективности разделения в реак-ционно-диффузионных мембранах основано на общности подхода, трактующего мембрану в сечении как точечную систему с конечным значением движущей силы на границах, т. е. как черный ящик . При этом предполагается, что перенос компонентов смеси сопряжен только с химической реакцией, взаимно их потоки независимы. [c.249]


    Селективность процесса разделения бинарной смеси в пористых сорбционно-диффузионных мембранах, определяемую в первом приближении идеальным фактором разделения, можно исследовать на основе уравнения проницаемости (2.63) с привлечением соотношений (2.38), (2.53), (2.66) и (2.68), связывающих феноменологические характеристики О,", Di и a ij с молекулярными параметрами газов (Ми ац, е,-, ). Очевидно, увеличение молекулярных размеров и параметров парного [c.65]

    Облегченная диффузия, в отличие от простой диффузии, облегчена участием в этом процессе специфических мембранных белков. Следовательно, облегченная диффузия — это диффузионный процесс, сопряженный с химической реакцией взаимодействия транспортируемого вещества с белком-пере-носчиком. Этот процесс специфичен и протекает с более высокой скоростью, чем простая диффузия. [c.309]

    Допущение о локальном равновесии позволило существенно упростить математическое описание стационарного мембранного процесса, разделить влияние сорбции и диффузии и представить проницаемость и селективность мембран как произведение сорбционного и диффузионного факторов  [c.16]

    Диффузионные мембраны обычно применяются для разделения газовых и жидких смесей методом испарения через мембрану [1]. Для разделения растворов под действием градиента давлений эти мембраны практического применения пока еще не находят, так как скорость процесса при использовании известных мембран этого типа очень низка. Она может быть увеличена путем создания ультратонких анизотропных диффузионных мембран (рис. П-2), а также повышением температуры разделяемой смеси. Перенос вещества через непористые мембраны рассмотрен в работах [1, 11]. [c.47]

    Процесс диффузионного переноса молекул Ь-аминокислот через ионообменные мембраны изучался в двухкамерных диализаторах, изготовленных из органического стекла. В качестве ионообменных мембран применялись отечественные ионообменные мембраны МК-40 (катионообменная) и МА-40 (анионообменная). Характеристика ионообменных мембран приведена в работе [2]. [c.443]

    Мембранная технология — это область химической технологии, предметом которой является разделение жидких и газовых смесей при помощи полупроницаемых мембран. Основу этой новой технологии составляют многочисленные и разнообразные мембранные процессы, такие, как обратный осмос, ультрафильтрация, диализ, электродиализ, испарение через мембрану, диффузионное разделение газов и др. Мембранные процессы отличаются отсутствием поглощения разделяемых компонентов и энергетических затрат на осуществление их фазового превращения. Эти процессы относятся к новейшему перспективному направлению химической технологии. [c.236]


    Сопряжение процессов характерно также для пористых сорбционно-диффузионных мембран, где сосуществуют взаимосвязанные процессы фазового переноса, сорбции и поверхностной диффузии. [c.16]

    Для диффузионных процессов в мембранах это положение соблюдается достаточно строго для химических реакций скорость превращения /а = Уг можно считать линейной функцией [c.26]

    Матрицы пористых мембран представляют собой пористые среды, структурными свойствами которых обусловлен процесс разделения газовой смеси. При этом в газодиффузионных мембранах влияние матрицы ограничено в основном объемом пор и функцией распределения пор по размерам. В мембранах сорбционно-диффузионного типа, кроме того, существенно энергетическое взаимодействие компонентов газовой смеси и матрицы, количественно определяемое адсорбционным и капиллярным потенциалами. [c.38]

    Влияние поверхностного потока на процесс разделения определяется избирательностью сорбционного процесса, и, как показано выше, в основном противоположно эффекту разделения за счет эффузии. При сорбции газа поверхностная концентрация компонентов с большей молекулярной массой заметно больше, что влечет уменьшение a ij и даже изменение результата процесса состав проникшего потока обогащается газами с большей молекулярной массой. По-существу, практически почти всегда имеют дело с сорбционно-диффузионными мембранами, поскольку даже для гелия Тс Т) доля поверхностного потока, по данным [3], достигает 13—25%. Газодиффузионный механизм переноса в пористых мембранах является определяющим для легких газов при низких давлениях Р РуС и высоких температурах Т>Тс- Разделение смесей паров углеводородов и других веществ с большой молекулярной массой всегда сопряжено с поверхностными явлениями, вклад которых в общий перенос массы соизмерим с диффузионным [3, 16]. [c.65]

    Классификация. Хим.-технол. процесс в целом - это сложная система, состоящая из единичных, связанных между собой элементов и взаимодействующая с окружающей средой. Элементами этой системы являются 5 групп процессов 1) механические - измельчение, грохочение, таблетирование, транспортирование твердых материалов, упаковка конечного продукта и др. 2) гидромеханические - перемещение жидкостей и газов по трубопроводам и аппаратам, пневматич. транспорт, гидравлич. классификация, туманоулавливание, фильтрование, флотация, центрифугирование, осаждение, перемешивание, псевдоожижение идр. скорость этих процессов определяется законами механики и гидродинамики 3) тепловые - испарение, конденсация, нафевание, охлаждение, выпаривание (см. также Теплообмен), скорость к-рых определяется законами теплопередачи 4) диффузионные или массообменные, связанные с переносом в-ва в разл. агрегатных состояниях из одной фазы в другую,- абсорбция газов, увлажнение газов и паров, адсорбция, дистилляция, ректификация, сушка, кристаллизация (см. также Кристаллизационные методы разделения смесей), сублимация, экстрагирование, жидкостная экстракция, ионный обмен, обратный осмос (см. также Мембранные процессы разделения), электродиализ и др. 5) химические. Все эти процессы рассматриваются как единичные или основные. [c.238]

    Нетрудно заметить, что наилучшими диффузионными характеристиками обладают газы с компактной неполярной молекулой и низкими значениями критической температуры. Подобный подход носит качественный характер и может быть использован лишь для предварительной оценки селективности мембранного процесса. [c.80]

    Таким образом, расчет и анализ процесса разделения в ре-акционно-диффузионных мембранах можно выполнить по уравнениям разд. 7.2.2. с учетом селективности и проницаемости мембраны как сильной функции внешних параметров процесса л ш и Е. Это обстоятельство следует учесть при вычислении интегральных потерь эксергии в мембранном модуле по уравнениям (7.52) и (7.53). [c.249]

    Для процессов разделения жидких смесей методом испарения через мембрану используют непористые полимерные мембраны, являющиеся квазигомогенными гелями. Растворитель и растворенные вещества проникают через них вследствие молекулярной диффузии, поэтому такие мембраны называют диффузионными. Скорость прохождения молекул через диффузионную мембрану пропорциональна коэффициенту диффузии, зависящему от размеров молекул и их формы. Диффузионные мембраны применяют для разделения компонентов с близкими [c.431]

    Диффузионно-мембранные процессы [c.331]

    Вклад отдельных видов сопротивлений в общее (Я) различен и зависит от типа мембранного процесса и условий его проведения. Например, при диффузионном разделении газов при условии небольшого перепада давлений через мембрану основное сопротивление процессу сосредоточено в самой мембране (г /-4 + Гз), и сопротивлениями Г) и 2 можно пренебречь при обратном осмосе и ультрафильтрации обычно пренебрежимо малой является величина г2 при испарении через мембрану могут быть соизмеримы все виды сопротивлений-г 1, и Г2. [c.341]


    В баромембранных процессах движущей силой переноса является градиент статического давления (ультра- и микрофильтрация, обратный осмос) в диффузионно-мембранных - градиент концентрации пе- [c.467]

    При диффузионно-мембранном процессе испарения через мембрану отводятся пары растворителя, которые затем конденсируются в отдельном конденсаторе. Процесс переноса паров растворителя поперек мембраны описывается законом диффузии Фика (уравнение (5.5)), в котором коэффициент диффузии имеет смысл коэффициента эквивалентного квазидиффузионного переноса целевого компонента в пористой структуре мембраны и определяется опытным путем для каждой конкретной пары компонент - мембрана. [c.468]

    Получение мембран спеканием полимеров, строганием пористых стержней, вальцеванием и межфазной поликонденсацией пока не нашло широкого практического распространения. Доминирующее положение занимают методы формования мембран из растворов полимеров. Значительное число мембран получают методом мокрого формования. Этот метод является почти универсальным, так как, варьируя условия на различных стадиях процесса, можно получить практически все типы мембран — от диффузионных до микрофильтрационных. [c.117]

    Вклад отдельных видов сопротивления в общее (Д) различен и зависит от типа мембранного процесса и условий его проведения. Например, при диффузионном [c.401]

    В пористых сорбционно-диффузионных мембранах на поверхности пор мембран возникает адсорбированный слой. Молекулы в адсорбированном слое могут обладать подвижностью. В результате будет наблюдаться перенос компонентов смеси вследствие градиента концентраций в адсорбированном слое, называемый поверхностной диффузией. В некоторых случаях [3] за счет поверхностной диффузии может переноситься до 70 % вещества. Влияние поверхностного потока на процесс разделения обычно противоположно влиянию кнудсеновской диффузии. При повышенных температурах поверхностный поток уменьшается, что может благоприятно сказаться на процессе разделения. [c.419]

    В мембранных процессах общий поток частиц данного сорта рассматривается как сумма трех потоков диффузионного [c.309]

    Процесс диффузионного переноса молекул аминокислот сопровождается их сорбцией ионообменными мембранами. Максимальное значение сорбционный процесс имеет для молекул диаминокарбоновых кислот на мембране МК-40. [c.449]

    Концентрационная поляризация и диффузионный слой играют очень важную роль в формировании свойств мембранной системы. Можно сказать, что, хотя свойства самой мембраны и являются основополагающими, знания этих свойств еще недостаточно для того, чтобы определить выходные характеристики всей системы и управлять ходом электромемб-ранного процесса. В первую очередь это является следствием того, что при достаточно высоких плотностях тока мембранный процесс лимитируется переносом ионов через диффузионный слой. В этих условиях не только суммарный скачок потенциала, но и такое свойство, как специфическая селективность по отношению к одному из сортов конкурирующих противоионов, определяется параметрами обессоливаемого диффузионного слоя. Параметры диффузионного слоя зависят от конструкции мембранного аппарата и от скорости прокачивания раствора. Таким образом, становятся более понятными пути совершенствования электромембранных аппаратов для этого требуются мембраны с заранее заданными свойствами и конструкции каналов, обеспечивающие оптимальные параметры диффузионного слоя. В большинстве случаев оптимальным будет диффузионный слой минимальной толщины, и здесь очень важной оказывается возможность воздействовать на диффузионный слой не только чисто гидродинамическими приемами, но и использовать для этого сопряженные эффекты, такие как гравитационная конвекция и электроконвекция. Отметим также, что конечный результат будет зависеть еще и от того, таким образом протекает эволюция порции раствора, движущейся по мембранному каналу, в частности, от того, каким образом будут воздействовать продукты электромембранных реакций на ход процесса (установлено [17, 218], например, что сдвиг pH в камере обессоливания отрицательно влияет на характеристики процесса обессоливания происходит снижение выхода по току из-за участия в переносе электричества продуктов диссоциации воды, кроме того, ионы воды вызывают эффект депрессии потока противоионов соли, противоположный эффекту экзальтации). Такого рода эффекты, проявляющиеся при движении раствора по длине мембранного канала, изучает динамика электродиализа, однако этот раздел мембранной электрохимии уже выходит за рамки данной книги. [c.347]

    В реакционно-диффузионных мембранах, где возникают, мигрируют и распадаются промежуточные химические соединения, массоперенос описывается системой нелинейных дифференциальных уравнений, решение которых неоднозначно и сильно зависит от степени неравновесностн системы при этом в результате сопряжения диффузии и химической реакции возможно возникновение новых потоков массы, усиливающих или ослабляющих проницаемость и селективность мембраны по целевому компоненту. При определенных пороговых значениях неравно-весности, в так называемых точках бифуркации, возможна потеря устойчивости системы, развитие диссипативных структур, обладающих элементами самоорганизации. Это характерно для биологических природных мембран, а также для синтезированных полимерных мембранных систем, моделирующих процессы метаболизма [1—4]. [c.16]

    Рассмотрим диффузионные процессы, осложненные появлением конденсированной фазы разделяемой смеси. В пористых сорбционно-диффузионных мембранах нельзя пренебречь энергией спязи компонентов смеси с матрицей, характеризуемой энтальпией адсорбции АЯ и потенциалом На поверхности пор мембран возникает адсорбированный слой, который, согласно потенциальной теории [1, 2] можно рассматривать как конденсированную фазу в поле сил, определяемых адсорбционным и капиллярным потенциалами. Допуская локальное равновесие между объемной и сорбированной фазами для каждого сечения капилляра, можно считать, что в сорбированной пленке вдоль оси 2 существует градиент концентрации, обусловленный неравномерностью состава в объемной газовой фазе. Миграцию компонентов смеси вследствие градиента концентрации в пленке принято называть поверхностной диффузией. [c.59]

    Реальные процессы в реакционно-диффузионных мембранах гораздо сложнее рассмотренной модели, поскольку проницание компонентов взаимозависимо, например, через определенные звенья в цепи химических превращений. Кроме того, в мембране, наряду с сопряженным механизмом, существует пассивный несопряженный массоперенос химически несвязанного компонента газовой смеои. Это усложняет анализ энергетической эффективности мембранного процесса, но основной вывод сохраняет силу, а именно энергетическое сопряжение массопереноса и химического превращения позволяет радикально улучшить массообменные характеристики при сохранении достаточно высоких значений энергетической эффективности чем выше степень сопряжения, тем значительнее этот эффект. Справедливости ради следует отметить, что противоположные тенденции изменения массообменных и энергетических показателей мембранного процесса сохраняются в реакционно-диффузионных мембранах, хотя на более высоком уровне совершенства процесса. [c.253]

    Подставив выражения для химического сродства Аг, скорости реакции Vrr и перекрестного коэффициента г в уравнение диссипативной функции (7.77) и интегрируя ifo по объему мембраны (см. 7.45), можно получить уравнение для расчета и анализа потерь эксергии в процессе селективного проницания через реакционно-диффузионную мембрану. Необходимое значение степени сопряжения массопереноса и химического превращения находят по уравнению (1.18) на основе опытных значений коэффициента ускорения Фь Предполагается также, что известно распределение концентраций всех компонентов разделяемой газовой смеои и веществ матрицы мембраны, участвующих в реакциях, как решение системы нелинейных дифференциальных уравнений (1.26). Энергетическая эффективность процесса при 7 = Гер оценивает эксергетический к. п.д., вычисляемый по уравнению (7.71). [c.255]

    Мембранные процессы разделения газовых смесей основаны на различной сиособности газов проникать через полупроницаемые перегородки - мембраны иод действием ие-ренада давления. Обычно, иолуироницаемая мембрана имеет асимметричную структуру. Верхний диффузионный слой является иолуироницаемой перегородкой и покоится иа пористой подложке, отвечающей за механические свойства мембраны. [c.488]

    К диффузионным процессам, широко распространенным в проц1 ссах получения продуктов тонкой химии, относятся дистилляция н ректификация, жидкостная и твердофазная экстракция, лристаллизация, абсорбция, адсорбция и нх разновидности, мембранные процессы разделения (обратный осмос, микро-фильграция и ультрафильтрация), сублимация и десублимация, сушка и др. [c.17]

    Приведем конкретный пример связной диаграммы процессов в полупроницаемой мембране для простейшего случая системы с компонентами А ж В, участвующими в реакции А В. Соответствующая диаграмма связи приведена на рис. 2.7, Если бы в реакции участвовало большее число компонентов, то каждому из них соответствовала бы своя (К—С)-цепочка диффузии, причем в каждой 1-й ячейке (К — С)-звено было бы связано через ТР-преобразователи сдвухсвязным диссипативным К-элементом химического превращения. По сути процесса в построенной диаграмме важно отразить тот факт, что молекулы-носители не проникают через границы мембраны, т. е. диаграммная сеть должна начинаться и заканчиваться К-элементами диффузионных сопротивлений, причем крайнее левое диффузионное сопротивление (на участке 1 ) и крайнее правое диффузионное сопротивление (па участке ) должны быть бесконечно велики (практически на несколько порядков выше, чем внутренние сопротивления). Для этого в связной диаграмме полное сопротивление диффузии /с-го компонента в г-й ячейке [c.133]

    При внеш воздействии на систему градиента давления или гравитац поля возникает бародиффузия. Примеры диффузионное осаждение мелких взвешенных частиц при столкновении их с молекулами газа (см. Лылеу.гавливание)-, баромембранные процессы - обратный осмос, микро- и ультрафильтрация (см. Мембранные процессы разделения, Ос.иос). [c.102]

    МЕМБРАННЫЕ ПРОЦЁССЫ РАЗДЕЛЁНИЯ, основаны на преим. проницаемости одного или неск. компонентов жидкой либо газовой смеси, а также коллоидной системы через разделительную перегородку-мембрану. Фаза, прошедшая через нее, наз. пермеатом (иногда - фильтратом), задержанная - концентратом. Движущая сила М. п. р. - разность хим. или электрохим. потенциалов по обе стороны перегородки. Мембранные процессы м. б. обусловлены градиентами давления (баромембранные процессы), электрич. потенциала (электромембранные процессы), концентрации (диффузионно-мембранные процессы) или комбинацией неск. факторов. [c.23]

    Мембранные процессы классифицируются по виду основной движущей силы процесса. Движущей силой мембранного процесса является градиент химического (для незаряженных частиц потока) или электрохимического (для заряженных частиц потока) потенциала. Однако для технических расчетов таких процессов, так же как и для других массообменных процессов, в качестве движущей силы мембранного процесса принимают градиент фактора, определяющего скорость данного процесса, например градиент давления, температуры и т.д. Таким образом, основной движущей силой мембранного процесса может быть градиент тяяекия - баромембранные процессы (обратный осмос, нано-, ультра- и микрофилыра-ция), градиент концентраций-диффузионно-мембранные процессы (диализ, испарение через мембрану, мембранное разделение газов и др.), градиент электрического потенциала-электромембранные процессы (электродиализ, электроосмос и др.), градиент температурпроцессы (мембранная дистилляция и др.). В некоторых мембранных процессах возможно сочетание двух или даже трех названных выше движущих сил. [c.314]

    Больщой класс задач составляют задачи о течениях с гетерогенными реакциями на твердых и межфазных поверхностях, в частности мембранах, процессы растворения и осаждения вещества из раствора или расплава и т. п. Гетерогенные реакции состоят из нескольких этапов. Первым этапом, называемым транспортным, является доставка реагирующего компонента к реагируе-мой поверхности. Второй этап состоит из самого процесса химической реакции па поверхности. Этот этап в свою очередь может состоять из нескольких этапов, включающих дифузию реагирующего вещества через стенку или поверхностный слой, адсорбцию вещества па поверхности, химическую реакцию, десорбцию продуктов реакции и их диффузию из стенки или поверхностного слоя. Третий этап заключается в переносе продуктов реакции в толщу потока. Каждый этап определяется своим характерным временем. Этап, обладающий наибольшим характерным временем, будем называть лимитирующим этапом, а соответствующий ему процесс — контролирующим. В случае, если лимитирующим является первый или третий из перечисленных выше этапов, то соответствующий процесс называется диффузионно контролируемым. Уравнения, описывающие этот этап, [c.92]

    Диффузионный мембранный метод в системе жидкость- твердое тело - газ получил название исиарение через мембрану или первапорация. Метод основан на селективной проницаемости некоторых материалов для различных компонентов жидких смесей. Явление селективной проницаемости впервые обнаружено на каучуковых мембранах для смесей углеводород - спирт. От.чичи-тельной особенностью процесса мембранного испарения от других мембранных процессов является переход проникающих через мембрану веществ из жидкого состояния в парообразное, для чего требуется подвод к системе энергии, 1Ю меньшей мере равной теплоте испарения пермеата. Из этого следует, что испарение через мембрану может быть использовано практически лишь тогда, когда селективность переноса гораздо выше, чем при простом испарении, в частности, для разделения азеотропных и близко кипящих смесей. Движущей силой процесса мембранного испарения является разность химических потенциалов по обе стороны мембраны. Длл поддержания химического потенциала на достаточно высоком уровне необходимо предотвратить конденсацию иермеата на поверхности мембраны со стороны пара. Это достигается непрерывным отводом пара, обдувом инертным газом или вакуумированием. [c.217]

    Термин фракционирование применяют очень часто, понимая под этим фракционированную перегонку или ректификацию. В действительности же перегонка является лишь одним из способов, при пойощи которого может быть достигнуто фракционирование смеси. В этом широком смысле фракционирование включает любой процесс систематического разделения смеси на относительно чистые фракции. Смешение близких по составу фракций и повторение основного процесса разделения обычно также включаются в понятие фракционирования. Наиболее широко известным примером фракционирования при помощи способа разделения, отличного от перегонки, является так называемая дробная кристаллизация. Она часто применяется, например, при выделении некоторых редкоземельных элементов [17]. Более современным примером фракционирования является разделение фторидов урана с помощью диффузионных мембран [18]. С этой целью была сконструирована весьма остроумная система для объединения определенных фракций и повторного их разделения с минимальной затратой ручного труда. Систематическое фракционированное осаждение высокополимерных соединений из растворов представляет общий интерес как метод, позволяющий находить функцию распределения молекул по размерам. Отмывка загрязнений от твердых тел является также часто применяемым способом разделения, а экстракция из одной жидкости в другую неоднократно обсуждалась в литературе и применяется как способ разделения и фракционирования .  [c.12]

    На концентрационную зависимость ИСЭ в разной степени могут оказывать влияние следующие факторы колебания диффузионного потенциала и температуры наличие компонентов пробы, влияющих на мембранные процессы и коэффициент активности анализируемого иона инструментальные ошибки ошибки при приготовлении растворов и построении градуировочного графика. В некоторых случаях влияние отдельных факторов можно элиминировать термостатированием, изменением конструкции электролитического ключа, постоянством ионной силы и т. д. Кроме того, величина погрешности будет зависеть и от выбора методики анализа. Как будет показано ниже, наибольшие погрешности накапливаются при использовании прямой ионометрии, наименьшие — мультиэлектродных систем. [c.102]

    В последнее время находят все- более широкое применение органические иониты в виде мембран. В процессах с использованием мембран большую роль играет скорость переноса ионов, так как потоки ионов через мембрану пропорциональны подвижностям при наложении электрического поля и коэффициентам диффузии ионов при его отсутствии. Для динамики ионного обмена на зернистых принтах скорости переноса ионов часто не имеют особенно большого значения. Важно заметить, что при использовании мембран мы сталкиваемся обьгчно со стационарными диффузионными задачами, которые без труда могут быть решены. [c.53]

    При выборе полимеров для изготовления газораз-делительных мембран, обладающих диффузионной проницаемостью, обычно исходят из фактора разделения компонентов смеси и проницаемости материала для целевого продукта. В зависимости от соотношения компонентов в разделяемой системе, условий проведения процесса разделения конечного состава смеси и объема смеси, подлежащей разделению, предпочтение может быть отдано материалу, обеспечивающему высокий фактор разделения, либо высокопроницаемому материалу, причем при изготовлении мембран промышленного назначения важное значение приобретает вопрос о стоимости полимера. [c.46]

    Все мембраны подразделяются на две группы - с пористой и сплошной матрицей. Мембранные системы с пористыми мембранами могут быть [1] газодиффузионными и сорбционно-диффузионными, с непористыми мембранами — сорбционно-диффузионными и реакционно-диффузионными. Системы первого типа характеризуются тем, что взаимодействие молекул газа с мембраной заключается только в соударениях молекул с поверхностью пор. Заметной адсорбции газов на иоверхности пор, а тем более капиллярной конденсации не наблюдается. Влияние свойств матрицы мембраны на перенос газов через нее определяется только структурой пор мембраны. Системы вт0р010 типа характеризуются существенным влиянием поверхностных явлений, в первую очередь адсорбции, на перенос газов через мембрану. Проникновение газов через непористые сорбционнодиффузионные полимерные мембраны представляет собой сложный процесс, который можно разбить на несколько стадий [2]  [c.418]


Смотреть страницы где упоминается термин Мембранные процессы диффузионно-мембранные: [c.79]    [c.233]    [c.218]    [c.211]    [c.107]    [c.585]    [c.69]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.314 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузионно-мембранные процессы

Мембранные



© 2025 chem21.info Реклама на сайте