Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление липидов растительных продуктов

    Фосс-лет и др.). При исследовании указанных методов извлекаются главным образом свободные липиды. Прочносвязанные липиды не экстрагируются как из продуктов растительного, так и животного происхождения. В связи с этим, а также ввиду значительного окисления липидов во время выделения были предприняты поиски более эффективных способов экстракции. Установили, что достаточно полная экстракция липидов может быть осуществлена, если применять смесь полярного растворителя и неполярного или слабополярного. Обычно используемый в качестве полярного компонента спирт ослабляет прочность комплекса липиды — белки, что обеспечивает полноту экстракции неполярным растворителем. Эффективность экстракции в значительной мере зависит от степени разрушения клеточной структуры исследуемых объектов. Используют гидролиз, разрушение в кавитационной мельнице, измельчение продуктов, предварительно замороженных жидким азотом. [c.212]


    Существует растительный фермент, причисляемый к диоксигеназам, который называют липоксигеназой (липоксидазой). Не имея в своем составе ни металла, ни другой известной простетической группы, лип-оксигеназа катализирует окисление полиеновых жирных кислот в липидах [уравнение (10-48)] [138]. Образование гидроперекисного продукта сопровождается смещением двойной связи и переходом ее [c.436]

    Окисление липидов растительных продуктов [c.294]

    Особенно важную роль пероксисомы играют в растительных клетках. У растений хорошо изучены два очень различных типа пероксисом. Одни из них обнаруживаются в листьях (рис. 8-33, А). Эти пероксисомы катализируют окисление побочного продукта реакции, в которой СО2 превращается в углевод (такой окислительный процесс называю фотодыханием, т. к. в нем используется О2 и освобождается СО2). Другой тип пероксисом встречается в прорастающих семенах (рис. 8-33, Б). Они служат здесь для превращения жирных кислот, запасенных в липидах семян, в сахара, необходимые для роста молодого растения. Поскольку это превращение жиров в сахара происходит в серии реакций, известных под названием глиоксилатного цикла, такие пероксисомы называют еще [c.36]

    В случаях, когда биологически активные вещества разрушаются при традиционных методах измельчения и сущки, применяют технологию криогенного измельчения и сущки свежего лекарственного растительного сырья. При этом ингибируются такие биохимические процессы, как перекисное окисление липидов, денатурация и диссоциация белковых молекул, пигментация, которые необратимо меняют биохимические свойства веществ, содержащихся в сырье. Криогенная переработка растительного сырья позволяет полностью сохранить нативную структуру не только находящихся в нем витаминов, но и молекулярных комплексов, содержащих широчайший спектр необходимых человеку микроэлементов. Этот факт чрезвычайно важен для полноценного усвоения витаминов и микроэлементов организмом человека. Практика внедрения криогенных перерабатывающих технологий показала, что наиболее оптимальным является вариант их комбинированного применения, позволяющий совместить целый ряд промежуточных технологических этапов и приводящий к значительному уменьшению затрат на дорогостоящее криогенное оборудование и производственные площади. Кроме того, определенные комбинации криогенных технологий позволяют получить принципиально новые продукты переработки. К ним можно отнести реструктурированные водные растительные экстракты, содержащие активные фрагменты витаминов, сложных эфиров и аминокислот жирорастворимые фракции с витаминами А, Е, К, Р, получаемые из криосублимированного растительного сырья растительную клетчатку, очищенную от ненасыщенных жирных кислот и содержащую водорастворимые витамины С, Р и основные микроэлементы. [c.480]


    Поскольку углеводы, липиды и белки продуктов питания включают моно- и полисахариды, жирные кислоты с короткой и длинной цепью, насыщенные и ненасыщенные жирные кислоты и т. д., калорийность каждого из индивидуальных компонентов различна. Так, глюкоза при окислении выделяет 3,75 ккал/г, в то время как гликоген 4,3 ккал/г. Животные белки более калорийны, чем растительные большинство животных липидов освобождает 9,5 ккал/г, а масло и свиное сало 9,2 ккал/г. Поэтому калорийность всех трех классов веществ, содержащихся в пище, указывается в виде средних значений 4,1, 9,3 и 4,1 ккал/г для углеводов, липидов i белков соответственно. Если допускать возможность неполного переваривания и/пли всасывания, эти значения можно округлить до целых тзгда каторийность глеводов, липидов и белков равна 4, 9 и 4 соответственно. [c.357]

    Перекисное окисление липидов — сложный процесс, протекающий как в животных, так и в растительных тканях. Он включает в себя активацию и деградацию липидных радикалов, встраивание в липиды предварительного активированного молекулярного кислорода, реорганизацию двойных связей в полиненасыщенных ацилах липидов и, как следствие, деструкцию мембранных липидов и самих биомембран. В результате развития свободнорадикальных реакций перекисного окисления липидов образуется целый ряд продуктов, в том числе спирты, кетоны, альдегиды и эфиры. Так, например, только при окислении линолевой кислоты образуется, по крайней мере, около 20 продуктов ее распада. Биологические мембраны, особенно мембраны холоднокровных животных, содержат большое количество ненасыщенных жирных кислот, металлопротеины, активирующие молекулярный кислород. Поэтому неудивительно, что в них могут развиваться лроцессы перекисного окисления липидов. [c.186]

    Жиры и липиды (жироподобные вещества), содержащиеся в растениях, выполняют ряд важнейших функций. Различают запасные и цитоплазматические жиры. Из липидов и липопротеидов построены мембранные слои на поверхности клеток и клеточных структур митохондрий, пластид, ядер. Цитоплазматические липиды, таким образом, регулируют проницаемость клеточных мембран для различных веществ. Содержание их в растениях невелико 0,1 - 0,5% от веса сырой растительной ткани. Запасные жиры содержатся в основном в семенах. Известно, что многие виды растений накапливают как основной продукт жизнедеятельности семян жиры, а не углеводы, поскольку при окислении жиров в процессе прорастания семян накапливается в два раза больше энергии, чем при окислении крахмала. Меньше содержится жиров в семенах зерновых культур 2 - 3% у ржи, ячменя, пшеницы, 6% у кукурузы. Масличные культуры содержат значительно больше жиров подсолнечник 30 - 50%, соя 20 - 30%, клещевина 50 - 60%. Растительные жиры - ценный продукт питания человека и животных, значительная часть жиров используется в лакокрасочной промышленности. [c.437]

    На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. Анализируя воздействие различных видов обработки пищевого сырья и продуктов (измельчение, действие температуры, брожение и т. д.) на усвояемость содержащихся в них белков, следует отметить, что в большинстве пищевых производств при соблюдении технологии не происходит деструкции аминокислот. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает, так как частичная денатурация белков облегчает доступ протеаз к пептидным связям. При интенсивной тепловой обработке усвояемость снижается. Такое же влияние оказывет наличие в продуктах редуцирующих сахаров и продуктов окисления липидов за счет их взаимодействия с белковыми компонентами пищи. [c.20]

    Поступление, распределение и выведение из организма. А. широко представлены в растительной пище, в тканях животных и человека. Выдыхаемый жвачными животными воздух всегда содержит метан — продукт брожения клетчатки. Он входит также в состав выдыхаемого воздуха и кишечных газов у человека. У млекопитающих в выдыхаемом воздухе идентифицированы этан, пропан, бутан, пентан, образующиеся в процессе перекис-ного окисления липидов при интенсификации этого процесса введением этанола в выдыхаемом воздухе появлялись 2-метил-пропан (изобутан), 2-метилбутан (изопентан) (Соколов и др. Lang el al.). [c.13]

    Разнообразная природа пищевых продуктов, обусловливающая различную прочность связи липидов с другими составными частями продукта, оказьшает выраженное влияние на эффективность экстрак- ции. Ранее предложенные методы экстракции основывались главным образом на использовании неполярных растворителей (диэтиловый эфир, тетрахлорэтилен, гексан и др.). Экстракция осуществляется в специальных приборах—экстракторах (Сокслета, Гольдфиша, Можон-нье, Фосс-лет, Сокстек и др.). При использовании указанных методов извлекаются главным образом свободные липиды. Прочно связанные липиды при этом не экстрагируются как из продуктов растительного, так и животного происхождения. В связи с этим, а также ввиду значительного окисления липидов в процессе вьщеления были предприняты поиски других, более эффективных способов экстракции. Установили, что достаточно полная экстракция липидов может быть осуществлена, если использовать смесь полярного растворителя и неполярного или слабополярного. Обычно используемый в качестве полярного компонента спирт ослабляет прочность комплекса липиды—белки, что обеспечивает полноту экстракции неполярным растворителем. Однако эффективность экстракции в значительной мере зависит от степени разрушения клеточной структуры исследуемых объектов. Для этого используют гидролиз, разрушение в кавитационной мельнице, измельчение продуктов, предварительно замороженных в жидком азоте. [c.317]


    Термин липид в определенной мере условен, поскольку под липидами понимают жироподобные вещества, входящие в состав всех живых клеток. Иногда к липидам относят различные по строению органические соединения, присутствующие в живых тканях, не растворимые в воде и извлекаемые из тканей неполярными органическими растворителями (диэтиловый эфир, бензол, хлороформ). Однако при таком подходе в состав липидов наряду с жирами попадают самые разные по своей природе соединения терпены и терпеноиды, смоляные кислоты, каротиноиды, хлорофиллы, витамины и др. Поэтому часто при отнесении соединений к липидам учитывают и химическое строение. В соответствии с химическим строением вьщеляют три группы собственно липидов жирные кислоты и продукты их ферментативного окисления (простагландины и другие гидроксикислоты) глицеролипиды (содержат в молекуле остаток глицерина) липиды разного состава, не содержащие остатка глицерина и не относящиеся к липидам первой группы (некоторые фосфолипиды и гликолипиды, диольные липиды, стерины и воски). Существуют и другие системы классификации липидов. Липиды создают в растительной ткани энергетический резерв, образуют защитные покровные ткани, служат запасными питательными веществами, входят в состав клеточных мембран. [c.534]


Смотреть страницы где упоминается термин Окисление липидов растительных продуктов: [c.36]   
Смотреть главы в:

Растительный белок -> Окисление липидов растительных продуктов




ПОИСК





Смотрите так же термины и статьи:

Липиды

Окисление липидов

Продукты окисления



© 2025 chem21.info Реклама на сайте