Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация спектроскопических методов

Рис. VI. . Классификация спектроскопических методов анализа Рис. VI. . Классификация спектроскопических методов анализа

Таблица 10.1 Классификация спектроскопических методов по типам спектров Таблица 10.1 Классификация спектроскопических методов по типам спектров
    Классификация спектроскопических методов по типам спектров [c.151]

    Из оптических методов анализа наиболее эффективным методом исследования можно считать оптическую спектроскопию. Классификация спектроскопических методов анализа представлена на рис. VI. 1. Спектроскопией называется совокупность методов определения качественного и количественного составов веществ, основанных на изучении электромагнитного излучения, поглощенного (испущенного, отраженного или рассеянного) веществом. Электромагнитное излучение, разложенное по длинам волн или по энергии, образует спектр. [c.91]

    В табл. 7.1 приведена классификация методов, используемых для определения растворимости и их метрологические и аналитические характеристики. Многообразие используемых методов заставляет вводить систематику, группирующую эти методы по некоторым общим признакам. При классификации методов первостепенную роль играет характер процесса, обусловливающего возникновение аналитического сигнала. На этой основе методы определения растворимости можно подразделить на химические, электрохимические, спектроскопические и радиохимические. [c.275]

    Спектроскопические методы анализа основаны на измерении интенсивности электромагнитного излучения, которое испускается анализируемым веществом (эмиссионный спектральный анализ) либо поглощается им. В последнем случае методы анализа называют абсорбционными. Они получили широкое распространение в различных областях науки и техники. Классификация этих методов приводится в учебниках, указанных в списке литературы. [c.125]

    Классификация спектроскопических методов [c.333]

    Элементарные составляющие химических компонентов — атомы, молекулы, функциональные группы атомов, ионы, формульные единицы ионов — узнаются и определяются по аналитическим сигналам, которые возникают при протекании определенных процессов внутри этих объектов или между ними. Химику-аналитику при этом безразлично, имеет ли такой процесс химический характер или причиной возникновения сигнала служит чисто физическое явление. Другими словами, для получения информации об элементарных составляющих химических компонентов исследуемого материала аналитик использует все возможности. При классификации же аналитических методов характер процесса, обусловливающего возникновение аналитического сигнала, должен играть первостепенную роль. На этой основе методы анализа можно подразделять на химические, электрохимические, спектроскопические и радиохимические. [c.17]


    Поглощение воды кератином изучали методами ЯМР- и ИК-спектроскопии, диэлектрической проницаемости и калориметрии 15—20]. Кератин дает в спектре ЯМР одну линию, ширина которой зависит от ориентации. В противоположность этому коллаген имеет спектр, состоящий из трех линий. Авторы работы Х15] изучали влияние ориентации на времена спин-спиновой релаксации абсорбированной воды в кератине из рога носорога. Преимущественное вращение молекул воды наблюдалось вокруг оси, приблизительно параллельной оси ориентации волокна. Исходя из результатов ИК-спектроскопических исследований, Бен-дит [16] сделал предположение о слабой ассоциации воды с карбонильными группами в кристаллической фазе. Исследование тем же методом дейтерированного кератина свидетельствует о аличии процесса Н— О-обмена [17]. Максимум, наблюдаемый на деполяризационных кривых, интерпретируется как результат переориентации связанных молекул воды [18]. Молекулы воды, абсорбированные кератином древесины, классифицируются как свободные или связанные [21, 22]. Предложена более детальная классификация связанных молекул воды [23]. В работе [24] развита модель, предполагающая наличие различных типов молекул воды со степенью ассоциации от 1 до 4 [24]. Соотношение числа молекул разного типа изменяется в зависимости от количества поглощенной воды. [c.244]

    Два других спектроскопических метода анализа оптимально чувствительны и могут служить окончательным критерием очистки редкоземельного образца. Оба требуют специального оборудования и высокой квалификации для их применения. Дуговой спектр будет находить все большее и большее применение в трудной проблеме классификации бесчисленного количества линий различных переходов электронов. В настоящее время наиболее употребительным методом анализа является рентгеноспектральный. В работе, выполненной Конигшмидом по определению атомного веса гольмия, иллюстрируется чувствительность этого метода. В этом препарате Ноддак нашла 0,013 0,004 атомных процента иттрия, 0,04 атомных процента эрбия и максимум 0,02 атомных процента остальных редкоземельных элементов. [c.81]

    Недостатком разделения элементов по подгруппам на основании физических методов исследования является то, что для разных свойств получаются разные варианты таблицы. Так, например, по своим спектральным свойствам водород аналогичен щелочным металлам, а гелий — щелочноземельным. Поэтому оба эти элемента в таблице периодической системы в работах, посвященных спектроскопическим исследованиям химических элементов, помещаются в первой и во второй группах,где по этим свойствам им и надлежит быть. Однако нахождение гелия во второй группе при классификации, учитывающей не спектральные, а какие-либо другие физические свойства, оказывается совершенно неоправданньом. [c.274]

    В основе всех спектроскопических методов лежит измерение зависимости интенсивности поглощения, испускания или рассеяния света веществом от частоты света (или длины волны). В оптической спектроскопии используются спектры поглощения в инфракрасной, видимой или ультрафиолетовой областях в, интервале длин волн от 10 1 до 10 см , а также спектры комбинационного рассеяния света и спектры люминесценции (менее важный и общий метод спектров люминесценции здесь не рассматривается). На рис. 70 приведена классификация спектров в зависимости от длины волны (или частоты). Разделение оптического спектра на эти участки связано с возможностями приборов, а также с природой поглощения света в разных областях. Для химиков-органиков наибольшее [c.607]

    Сильное коротковолновое излучение водородных пламен впервые обнаружил Стокс еще, в 1852 г., а полосатый ультрафиолетовый спектр сфотографировали независимо друг от друга в- 1880 г. Лайви нг и Дюар, а также Югинс (1924 г.). Детальный анализ вращательной структуры полос, выполненный Уатсоном (1924 г.) и Джеком (1928 г.), показал, что полосы соответствуют электронному переходу в двухатомной молекуле с небольшим моментом инерции. Единственно возможной частицей, ответственной за это излучение, является гидроксильный радикал ОН. Бонгоффер обнаружил радикал 0Н при введении атомного водорода в кислород (1926 г.) и в парах воды, нагретых до 1000—1600°С (1928 г.). Полный анализ спектра радикала 0Н был проведен в 1948 г. Дике и Кроосуайтом, которые дали классификацию всех полос и ветвей и определили длины волн и интенсивности вращательных линий радикала 0Н, наблюдаемых в спектре водород-кислород-ного пламени в области от 281,1 до 354,6 нм. Позднее получили запись спектра радикала 0Н в области 260—352 м [37]. Полосы ОН могут быть легко получены в спектре поглощения. После того как Кондратьевым и Зискиным в 1936 г. был разработан чувствительный спектроскопический метод линейчатого поглощения, стало возможным экспериментальное определение концентрации гидроксильного радикала в пламени. Гидроксильный радикал был обнаружен в пламени водорода также масс-спектроскопическим методом [38] и методом ЭПР [39]. [c.123]


    Методы химического анализа красителей вкратце излагались при систематическом описании красителей в соответствии с их химической классификацией. Эти методы зависят от строения красителей и от наличия определенных активных групп. Например, азокрасители обычно можно определить титрованием треххлористым титаном. Некоторые основные и кислотные красители можно титровать друг другом или растворами, содержащими ионы с противоположным характером, для получения нерастворимых комплексов. Некоторые индигоидные красители определяют методом сульфирования и последующего титрования перманганатом. К кубовым красителям, как к классу, применим лишь один метод, а именно определение содержания кубующейся компоненты восстановлением в щелочной среде II последующим окислением. Методы непосредственного химического анализа часто оказываются неприменимыми к продажным красителям и представляют очень малую ценность. Поэтому широко используются колористические и спектроскопические методы и испытания, основанные на крашении и исследовании коло- )нстических свойств крастелей. Например, красители неизвестного строения, нерастворимые в воде и в обычных органических растворителях. а также сернистые красители можно испытывать только колористическими методами. [c.1485]

    Одним из результатов, к которым привела периодическая классификация, было то, что вновь возродилась гипотеза Праута. К крупнейшим защитникам идеи единства материи принадлежал Уильям Крукс (1832—1919), знаменитый лондонский химик и физик, учившийся химип у Гофмана в 1857 г. Крукс провел исследования селеноцианидов, в 1861 г. открыл спектроскопическим методом таллий, в 1873 г. сконструировал радиометр, а в 1903 г.— спинтарископ Его сочинения о лучистой материи стали впоследствии отправным пунктом для развития новых взглядов на строение материи. В 1859 г. Крукс основал л урнал Химические [c.274]

    Согласно предложенной выше классификации смешанных карбонилов металлов, ясно, что соединения типа А представляют собой всего лишь особый случай двухъядерных карбонилов металлов, таких, как Со2(СО)з и Мп2(С0)ю- Поскольку образование связей металл—металл в значительной степени зависит от величины наполовину заполненных перекрывающихся орбиталей, разумно предположить, что энергия диссоциации связи металл— металл в (С0)5Мп—Йе(С0)5 занимает промежуточное положение по отношению к энергиям диссоциации этих связей в Мп2(С0)ю и Ке2(СО) о- В тех случаях, когда известно, что переходные элементы одной и той же вертикальной триады дают несмешанные двухъ- или трехъядерные карбонилы металлов, нет причины сомневаться в сугцествовании соответствующих смешанных карбонилов, образующихся в результате всех возможных сочетаний одноядерных соединений. Так, соединения типа РеКп2(СО)12 или Ре20з(СО)12 должны быть устойчивыми и могли бы существовать, если бы удалось разработать метод их получения. Возникает, однако, один вопрос. В вертикальных триадах переходных металлов размер наполовину заполненных орбиталей, ответственных за образование связей металл—металл, увеличивается при переходе от верхнего элемента к нижнему. Прямым следствием этого является то, что образование многоядерных карбонилов металлов преимущественно происходит за счет возникновения непосредственных связей металл—металл, а не благодаря появлению мостиковых СО-групп. В связи с этим структура Гез(СО)12 должна быть аналогична структуре Вцз(СО)12 и 08з(СО) 2- В таком случае требуется ответить на вопрос будет ли содержать мостиковые СО-группы еще неизвестный смешанный карбонил РеВ 02(00)12- В литературе до сих пор нет сообщений о рентгенографическом исследовании структуры смешанных карбонилов металлов первого типа. Однако для этой цели можно использовать данные ИК-спектроскопического анализа, позволяющие сделать предварительные выводы о возможной структуре некоторых соединений. [c.205]


Смотреть страницы где упоминается термин Классификация спектроскопических методов: [c.58]    [c.186]    [c.20]   
Смотреть главы в:

Основы аналитической химии Часть 2 Изд.2 -> Классификация спектроскопических методов




ПОИСК





Смотрите так же термины и статьи:

Метод классификация

Метод спектроскопический



© 2025 chem21.info Реклама на сайте