Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры классификация

    Гибридные состояния углерода и 5р. Строение и особенности двойной и тройной связи. Изомерия и номенклатура этиленовых и аце тиленовых у1 леводородов. Геометрическая цис-, транс-) изомерия Способы получения. Физические и химические свойства алкенов и ал кинов. Реакции присоединения. Правило В. В. Марковникова. Исклю чение из этого правила (Хараш). Реакции окисления. Полимеризация Свойства ацетиленового водорода. Классификация и получение диено вых углеводородов. Физические и химические свойства. Эффект сопря жения. 1,4-Присоединение, Диеновые синтезы. Полимеризация диено вых углеводородов. Каучуки синтетические и натуральные. УФ и ИК спектры этиленовых и ацетиленовых углеводородов. [c.169]


    В этой главе мы попытались рассмотреть работы обоих типов. Краткое введение касается происхождения инфракрасных спектров, классификации молекулярных колебаний, свойств симметрии молекул. Мы стремились прежде всего к доступности изложения часто для приближенно верных утверждений не указаны ограничения, так как глава предназначена скорее для химика, изучающего гетероциклические соединения, чем для физико-химика. После обсуждения ряда общих вопросов отдельные группы соединений рассматриваются в зависимости от размера кольца. Соединения с пяти- и шестичленными кольцами разделены на содержащие карбонильную группу в кольце и не содержащие ее, на ароматические и неароматические, а также в соответствии с числом, взаимным расположением и типом гетероатомов . В каждом из этих разделов сначала собраны работы, в которых предприняты попытки, более или менее полного отнесения колебаний молекул (обычно они имеются только для простейших соединений). Затем мы пытались обсудить данные о замещенных молекулах. В последнем разделе рассмотрены колебания заместителей, в частности, как влияет на них взаимодействие с различными гетероциклами. [c.471]

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]

    Для соединений с не очень большим числом атомов углерода в молекуле (до 10—12) полезно знать температуру кипения и другие константы. Ориентируясь на хорошо известные температуры кипения простейших представителей различных классов органических веществ (см., например, табл. 1.2), можно уточнить результаты произведенной по спектру классификации и приблизительно указать положение исследуемых соединений в данных гомологических рядах. При этом надо учитывать, что разветвление скелета и изменения структуры, уменьшающие полярность и ассоциацию молекул (особенно за счет водородных связей), приводят к снижению температуры кипения изомеров. Увеличение же числа функциональных заместителей и замыкание колец влечет повышение температуры кипения. [c.20]

    Электронная спектроскопия. Природа УФ-спектров. Электронные переходы, проявляющиеся в УФ- и видимой области спектра. Классификация полос. Типы задач и возможности УФ-спектроско-пии идентификация, количественный анализ. Выявление влияния сопряжения. [c.222]

    Многообразие релаксационных процессов требует их классификации. Схема классификации процессов на молекулярном уровне представлена на рис. I. 17, а характерный вид реального релаксационного спектра (в более удобных билогарифмических координатах) — на рис. I. 18. [c.59]


    В производное кобальта(П) [41]. Исследования показали, что медь(П) и кобальт(П) конкурируют за одно и то же место в белке. Поскольку спектры соединений, содержащих кобальт(П), интерпретировать легче, чем спектры производных меди(П). авторы смогли прийти к выводу кобальт находится либо в центре искаженного тетраэдра, либо в пятикоординационном окружении. Интенсивная линия переноса заряда указывает на существование связи Со — SR. Отнесение всех линий спектра нативного медьсодержащего белка было проведено по аналогии. Существование порфириновых комплексов в ферментных системах можно установить по наличию в спектре характеристической полосы Соре в области 25 000 см . Эта полоса обусловлена связанным с лигандом переходом я -> я типа перехода с переносом заряда (см. гл. 5). В электронных спектрах порфириновых комплексов обнаружены также две другие полосы низкой интенсивности. Существование этих полос и их сдвиги при введении заместителей в циклы можно понять, проведя расчеты по методу МО [42]. Положения этих полос использованы для классификации цитохромов. [c.109]

    Из 18 внутримолекулярных движений этана одно соответствует внутреннему вращению СНд-группы вокруг С—С-связи, шесть — очень жестким валентным С—Н-колебаниям, одно — весьма жесткому валентному С—С-колебанию (это колебание переходит в трансляционное движение С2Н+ и соответствует координате реакции, поэтому в спектре активированного комплекса валентное С—С-коле-бание отсутствует) и десять — деформационным колебаниям. Из этих последних шесть соответствуют довольно жестким внутренним деформационным колебаниям и четыре — внешним деформационным колебаниям. Классификация частот колебаний различных видов и их значения для этана приведены в работе [49]. [c.91]

    Такое деление достаточно условное, т.к. фундаментальной причиной, определяющей в целом состояние нефти как системы, в том числе и вероятность выделения твердой макрофазы, безусловно является компонентный состав самой нефти. Однако такая вероятностная зависимость возможности образования новой твердой макрофазы от химсостава нефти не означает однозначную реализацию ее в любых условиях. Она может быть реализована лишь через вторую группу причин, определяющих состояние нефти (выделение кристаллов и формирование оптимальных дисперсных частиц), при определенном сочетании третьей фуппы причин (оптимальные температура, скорость потока, наличие диспергента и др.). Предлагаемая классификация причин, влияющих на процесс формирования новой твердой макрофазы, позволяет широкий спектр случаев выделения твердых нефтяных отложений рассматривать более обобщенно с единых позиций. [c.10]

    Разложение излучения в спектр проводят в спектральных приборах. В данной главе невозможно подробно остановиться на конструкции всех выпускаемых промышленностью приборов, которые можно отнести к двум группам призменные спектральные приборы и приборы с диффракционными решетками. В основе такой классификации лежит способ разложения излучения [c.371]

    В основу классификации экспериментальных методов рентгенографии можно положить либо способ регистрации дифракционного спектра (фотографический или ионизационный), либо агрегатное состояние исследуемого объекта (поли- или монокристалл, аморфное вещество, жидкость или газ). Несмотря на существование единого физического подхода к проблеме дифракции рентгеновских лучей (см. Введение и гл. I), различия в методических особенностях экспериментальных исследований различных объектов весьма существенны и приводят к появлению специальных областей рентгеноструктурного анализа. Например, значительная информация о белках, полимерах и ряде других объектов сосредоточена в области малых углов рассеяния от нескольких угловых минут до 3—5 градусов. С позиций физики рассеяния рентгеновских лучей между этой и всей остальной частью дифракционного спектра нет никакой принципиальной разницы, однако, специфические экспериментальные трудности, в первую очередь — малая интенсивность рассеянного излучения, привели к созданию специального рентгеновского оборудования — малоугловых рентгеновских камер и дифрактометров [1]. [c.111]

    Проведите классификацию линий спектров по элементам. Предскажите цвета их спектров. Какие элементы мешают друг другу при их определении по окраске пламени Каким способом можно ослабить мешаюш,ее влияние других атомов  [c.31]

    Полосы поглощения в УФ-спектрах могут заметно различаться своими параметрами — положением, интенсивностью, формой. Было установлено, что полосы со сходными признаками соответствуют в определенной мере родственным группам хромофоров. Такие наблюдения привели к введению классификации полос и формулированию эмпирических критериев для отнесения [c.49]

    Хотя ранние работы по изучению атомных спектров и были шагом вперед, они тем не менее носили эмпирический характер. По большей части эти работы ограничивались классификацией и корреляцией наблюдаемых данных с помощью эмпирических соотношений, но совсем не объясняли механизма возникновения спектральных линий. Естественно было предположить, что спектральные серии испускаются атомами, но как атом может испускать такие линии, вряд ли стоило обсуждать, так как не существовало удовлетворительной теории строения атома. [c.27]


    Весь спектр повышенных экологических требований к строительным материалам должен быть обеспечен шкалой безопасности и кондиционности техногенного сырья, его промышленной пригодности. Эта шкала формулирует, в свою очередь, специфические условия экологической надежности вторичных сырьевых ресурсов, для которых должны быть соблюдены следуюшие требования полное отсутствие радиоактивности и радиоактивных изотопов (8г, С8, 8с, Нл, ТК, Ас, Ра, В1) или обеспечение фонового уровня излучений полное отсутствие органических канцерогенных вешеств, а также невозможность их образования в процессе технологической переработки и приготовления изделий обеспечение уровня предельно допустимой концентрации (ПДК) канцерогенных элементов (V, Ве, Т1, и, ТЬ, 8е, Сг, гп) обеспечение уровня ПДК отравляющих веществ и соединений (С1, Р, Ы, РЬ, 8, редкоземельных элементов и др.) отсутствие органических аллергенов установление основности вторичного сырья, его классификации, отнесение по результатам анализа к определенному виду с оценкой перспективы широкого его использования выявление оптимальных интервалов, соотношений компонентов, важных в технологических аспектах корреляций состав — свойства наличие легирующих (ценных, положительно влияющих на физи-ко-механические свойства изделий) компонентов. [c.13]

    Пользуясь схемой 8.3, легко провести предварительную классификацию возможных электронных переходов, проявляющихся в видимой и ближней УФ-области спектра. [c.165]

    ПРИМЕРНАЯ КЛАССИФИКАЦИЯ ИНФРАКРАСНЫХ СПЕКТРОВ Волновое число, см—1 [c.224]

    При классификации спектров принято разбивать электроны каждого определяемого главным квантовым числом п слоя на отдельные подгруппы, соответствующие тому или иному побочному квантовому числу /. Числовые значения последнего обычно заменяются при этом условными буквенными обозначениями согласно приводимому ниже ряду  [c.225]

    Приведем классификацию электронных спектров основанную на указании типов уровней, между которыми происходит переход. Типы уровней в свою очередь определяются составом и строением веществ. [c.306]

    В зависимости от сложности спектров, задачи на структурный анализ сгруппированы в три раздела. Первый из них содержит простейшие спектры ПМР без проявления спин-спинового взаимодействия, второй — задачи на расшифровку спектров первого порядка и третий — на расшифровку спектрой второго порядка. Для тренировки в оценке химической и магнитной эквивалентности протонов сначала дается несколько задач на классификацию спиновых систем. [c.102]

    Идентификацию и классификацию глин осуществляют главным образом путем анализа рентгенограмм и адсорбционных спектров, а также посредством дифференциального термического анализа. [c.133]

    Если классифицировать нефти по их фракциям, то целесообразно применять для сравнения столько фракций, сколько окажется необходимым. Идея Лена и Гартона была развита Ван-Несом и Ван-Вестеном [391)1, применявшими кривую истинных температур кипения для всей нефти в целом и последующий анализ каждой фракции с целью выяснения распределения углерода в нафтеновых, парафиновых и ароматических углеводородах. Получающиеся таким образом результаты авторы назвали спектром распределения углерода, имеющим большое значение для переработки нефти. Эта система имеет ограниченное значение при характеристике нефтей по классам, но может быть весьма полезной, так как позволяет дифференцировать различные нефти. Однако она с успехом может быть использована для ключевых фракций по классификации Лена и Гартона. [c.52]

    Из классификации теплообменников (см. главу 1) и видов их расчета (см. главу 2) видно, какое бесконечное множество частных алгоритмов требуется для охвата основными видами )асчета наиболее распространенных промышленных аппаратов. Рассмотренные далее постоянные структуры являются универсальными, распространяются на любые теплообменники, что позволяет перейти от кумуляции частных алгоритмов к синтезу универсальных алгоритмов широкого спектра приложения. Таким образом, закладывается надежная методическая основа синтеза практически любых алгоритмов расчета и оптимизации промышленных геплообменников. [c.55]

    В процессе исследования и нроектирования ГАПС химической промышленности и для управления ими применяется широкий спектр методов кибернетики, а методологической основой анализа и синтеза ГАПС как сложных систем является системный анализ. В процессе синтеза ГАПС кроме ставшего уже традиционным метода математического моделирования широко применяются теория выбора и принятия решений, автоматическая классификация, теория графов, теория сетей и т. д. (рис. 9.4). Так как проектирование систем периодического действия возможно только с учетом способа их функционирования, то возникает необходимость в применении теории расписаний или теории массового обслуживания. Для задач структурно-параметрического синтеза, формулируемых как задачи дис- [c.531]

    В табл. 8.2 приведена классификация частот нормальных колебаний н-парафинов и область изменения частот. Эти данные можно использовать для оценки термодинамических функций молекул и радикалов. Рисунок, приведенный ниже, поясняет табл. 8.2 и схематически показывает строение и колебательные координаты н-парафинов. Учитывая свойство характеристичности колебаний и пользуясь данными табл. 8.2, можно получить приближенный колебательный спектр любой молекулы алкана и соответствующего ей радикала. Частоты нормальных колебаний для многих углеводородов различных классов приведены в монографии Свердлова, Ковнера и Крайнова [4 9]. [c.98]

    В настоящее время для обнаружения и идентификащ1и дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, ви-зуально-измерительный, радиационный, акустический и проникающими веществами [59]. По причинам конструктивного и эксплуатационного характера при диагностировании крупногабаритных конструкций испо.иьзу-ются, в основном, следующие методы НК магнитный коьггроль (ГОСТ [c.28]

    Спирты. Классификация. Одноатомные предельные спирты. Изомерия и номенклатура. Способы получения. Физические свойства. Н-связь. Химические свойства. Высшие жирные спирты (ВЖС). Двух-и трехатомные спирты. Получение и свойства. Непредельные спирты. Правило А. П. Эльтекова. Отдельные представители спиртов. УФ и ИК спектры спиртов. [c.169]

    Константы спнн-спинового взаимодействия и классификация спектров ПМР [c.28]

    Определение гомологических серий и альтернативных брутто-формул. При групповой идентификации органических соединений по масс-спектрам низкого разрешения следует учитывать, что основу классификации органических веществ образуют гомологические ряды с гомологической разностью СНг, имеющей массовое число 14. По этой причине целесообразно выражение массовых чисел различных частиц (молекул, радикалов, ионов) в четыр-надцатиричной системе счисления. При этом каждое массовое число М может быть представлено в виде пары (десятичных) чисел х у), где у — число единиц младшего разряда четырнад-цатиричного массового числа, х — число единиц старших разрядов. Параметры X тл у определяются как целое частное от деления УИ на 14 (л ) и как остаток (у), например 78 = 5-14-1-8 или в сокращенной записи (5 8) 253 = = 18-14 + 1 - (18 1) и т. д. [c.183]

    Для бета-излучения известны случаи, когда бета-распад приводит конечное ядро непосредственно в его основное состояние. Как можно видеть из рис. 11-12, этот случай имеет место для изотопа 5с, который переходит в результате и пy кaния одной бета-частицы в основное состояние 11. Для этого распада интересно определить энергию распада, классификацию распада как разрешенного или запрещенного и распределение ядерного спина между начальным и конечным уровнями. Энергия распада — это та же самая энергия, что и граничная энергия бета-частицы, и она может быть определена из графика Ферми для бета-спектра. Для этого частного случая распределение уровней может быть выявлено из других источников информации, и оказалось, что значение / /2 отвечает как 5с, так и Однако еще нужно определить, соответствует ли такое распределение ядерных спинов классификации распада. Так как оба уровня — это /-уровни, то изменения четности не происходит и ясно, что изменение спина Д/ = 0. Это значит, что переход должен быть разрешенным. Далее, если теория верна, то значение g fTl/. будет также в допустимом интервале. Рассчитанное значение gfT L равно 5,7. Эта величина попадает в допустимые пределы, и, значит, теория и эксперимент в данном частном случае соответствуют друг другу. Установлено огромное число более сложных схем распада и некоторые из них, включая изомерный показаны на рис. [c.412]

    Люди, разрабатывавшие квантовун теорию и методы интерпретации атомных спектров, воспитывались на традициях, в которых менделеевская классификация была частью научного климата века. Разобраться в с.южных атомных спектрах было бы невозможно без сознательного применения периодической системы. Квантовая теория. несмотря на ее триу.иф, не превзошла достижений Д. И. Менделеева в точном предсказании свойств до того неизвестных скандия, галлия и германия. Однако квантовая теория действительно устранила некоторые недостатки периодической системы.  [c.60]

    Понятие симметрии играет важную роль во всех е стественных науках. Свойствами симметрии обладают структуры мно1их молекул, ионов, образуемых ими реагирующих систем. Симметрия волновых функций точно соответствует свойствам симметрии ядерных конфигура1Ц1Й, и именно сферическая симметрия водородоподобного атома является причиной наличия одной л-, трех р-,, пяти семи /-орбиталей и т. д., вырождения уровней л-МО в линейных молекулах, структурных искажений, вызываемых эффектом Яна— Теллера первого порядка, и пр. Зная свойства симметрии волновых функций различных электронных состояний, можно, не прибегая к прямым расчетам, определить возможность переходов от одного состояния в другое и получить тем самым представление о характере спектров молекул. По этим свойствам можно судить также об условиях (пространственной ориентации, типе возбуждения), в которых возможны или невозможны реакции между отдельными молекулами. Во всех случаях получаемая информация имеет качественный характер, однако она имеет принципиальное значение для целей классификации и выработки основных принципов. [c.184]

    Ауверс составил таблицы стандартных значений удельных экзальтаций для определенных типов структур, которые в течение многих лет служили химикам-орга-пикам иодсгюрьем для сгруктурной классификации химических соединений. Б настоящее время для решения структурных задач все чаще применяются ИК-спектро-сконнческие методы, и таблицы Аувсрса сейчас приобрели уже исторический интерес. [c.223]

    Электронные B. . многоатомных молекул классифицируют, основываясь на св-вах симметрии их электронных волновых ф-ций или характере молекулярных орбиталей, занятых холостыми электронами, поскольку понятие квантовых чисел электронов для таких молекул теряет простой смысл. Св-ва симметрии электронных волновых ф-ций молекул обозначают в соответствии с теорией групп симметрии. Так, для молекул Hj O, HjO, относящихся к группе симметрии v, существует 4 возможных типа симметрии волновой ф-ции (А , А , и Bj) в зависимости от того, сохраняется или меняется ее знак при операциях симметрии, свойственных данной группе. Помимо обозначения типа симметрии, индексом слева вверху указывают мультиплетность состояния. Буквы g к и ъ правом ниж. индексе показывают, сохраняется или меняется знак волновой ф-ции при операции инверсии. Необходимо отметить, что такая классификация в неявном виде предполагает сохранение в В. с. молекулы геометрии ее основного состояния. Это справедливо в общем виде лишь при рассмотрении спектров поглощения, когда выполняется принцип Франка-Кондона. На самом же деле у мн. молекул равновесная конфигурация ядер в В. с. может сильно отличаться от конфигурации в основном состоянии (примеры см. ниже). [c.408]

    К. с. и волновые ф-ции определены только для квантовой системы как целого, но не для отдельных ее частей Однако при анализе сложных систем выделяют отдельные подсистемы, не взаимодействующие между собой (или отдельные типы движений, не смешивающиеся друг с другом), и приближенно описывают К. с. целого через К. с. его частей. Так, К. с. молекулы в адиабатическом приближении задают, выделяя подсистему электронов и подсистему ядер, совершающих колебат. движение кроме того, отдельно рассматривают вращение молекул как целого. Это приводит к выделению электронных, колебат. и вращат. К с., что отражается в классификации мол. спектрюв (см. Вращательные спектры. Колебательные спектры. Электронные спектры). В свою очередь, электронные состояния описывают в молекулярных орбиталей методах через К. с. отдельных электронов. Взаимод. подсистем и разных типов движений учитывают спец. методами (см. Возмущений теория. Вариационный метод). [c.367]


Смотреть страницы где упоминается термин Спектры классификация: [c.388]    [c.673]    [c.353]    [c.125]    [c.331]    [c.198]    [c.291]    [c.408]    [c.148]   
Общая и неорганическая химия Изд.3 (1998) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация (групповая идентификация) по масс-спектрам

Классификация антибиотиков по спектру биологического действия

Классификация гербицидов спектру действия на растения

Классификация масс-спектров

Классификация органических соединений по растворимости, спектрам ядерного магнитного резонанса и инфракрасным спектрам

Классификация спектров поглощения

Классификация типов спектров (примеры)

Классификация точек спектра замкнутого линейного оператора

Методы анализа в ультрафиолетовой области спектра, классификация

Общая характеристика электронных спектров поглощения органических соединений и классификация электронных переходов

Определение периодической функции. Ряд Фурье в комплексной и вещественной формах. Предельный переход к интегралу Фурье. Замечание об особенностях интеграла Фурье как суммы, не обладающей свойствами своих слагаемых Спектры определения и классификация

Спектр распределения углерода в качестве основы классификации нефтей

Спектры поглощения алмаза в ИК-области. Классификация алмазов

Спектры поглощения и излучения. Длительность возбуждённых состояний Законы затухании свечения. Влияние температуры. Электрические свойства люминофоров. Сводка признаков, позволяющих определить тип люминесценции Другие виды классификации люминесценции



© 2024 chem21.info Реклама на сайте