Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры оптически активные для разделения

    Четвертый том справочника содержит сведения по аналитической химии (методы разделения весовой, объемный и газовый анализ потенциометрический, полярографический, колориметрический и другие методы анализа), по атомному эмиссионному и абсорбционному спектральному анализу, спектрам поглощения неорганических и органических соединений. Приводятся также данные о показателях преломления жидкостей и оптической активности органических соединений. [c.2]


    Атомный эмиссионный и абсорбционный спектральный анализ Спектры поглощения Показатели преломления н оптическая активность Указатель методов анализа и разделения элементов [c.13]

    Разделение оптически активных веществ на нормальные (подчиняющиеся закону Био) и аномальные , ему не подчиняющиеся, было предложено самим Био. Однако ему и многим исследователям после него долгое время не было известно никакого другого вещества с аномальной дисперсией, кроме винной кислоты. Причина та, что для изучения оптического вращения применялась почти исключительно натриевая />-линия спектра, В монографии по дисперсии оптического вращения Джерасси говорит Открытие бунзеновской горелки нанесло серьезный удар развитию исследований по дисперсии вращения, так как это открытие предоставило химику-органику (который более, чем любой другой химик, накапливает данные по оптическому вращению в ходе своей работы) очень удобный и почти монохроматический источник света — натриевое пламя . С тех пор [c.206]

    Подтверждением этой концепции были рентгеноструктурные исследования стереорегулярного полипропиленоксида в результате которых была установлена его изотактическая структура, что не исключало, однако, существования стереоблока. Более убедителен в этом смысле факт разделения продукта стереоспецифической полимеризации ( )-окиси пропилена на фракции, обладающие оптической активностью противоположного знака (табл. 3). Разделение проводили адсорбционным путем с использованием асимметрических носителей. Полученные при разделении фракции были тщательно отмыты, перекристаллизованы для предотвращения загрязнения полимера оптически активным носителем и идентифицированы по ИК-спектру. Хотя наблюдаемый эффект разделения [c.365]

    Данные перегонки заносят обычно в таблицу, включающую следующие рубрики 1) номер фракции, 2) температура кипения (иногда приводится давление), 3) объем отобранного дистиллата или вес фракции, 4) общий объем (или вес) дистиллата. Обычно при контроле за ходом перегонки не ограничиваются одной лишь температурой кипения, но измеряют и другие физические константы фракций (показатель преломления, плотность, а у оптически активных веществ—удельное вращение). Можно использовать и любые другие характеристические константы желательно лишь, чтобы их значения для отдельных компонентов смеси как можно больше отличались друг от друга. Измерение таких констант дает наиболее четкую картину хода разделения веществ в процессе ректификации. Можно воспользоваться и химическими определениями (например, число кислотности, число омыления, йодное число, определение гидроксильных групп по Церевитинову и Чугаеву, определение карбонильной группы и т. д.) и определением физических свойств (температура плавления, инфракрасные, видимые и ультрафиолетовые спектры и т. д.). Если процесс перегонки контролируют одним из перечисленных способов, то полученные результаты также записывают в таблицу. В примечании можно указать и другие данные, имеющие значение при возможном воспроизведении опыта, например температуру в обогревательной рубашке, температуру в перегонной колбе, нагрузку колонки, флегмовое число и т. д. В случае точной перегонки вычисляют истинную температуру кипения с поправкой на давление и частичное погружение термометра. [c.255]


    Следующим этапом явились расчеты спектров силикатов, учитывающие все оптические ветви колебаний кристалла [1, 9—13, 17, 18]. Во всех этих расчетах силовое поле описывалось как поле близкодействий. Вычисляемые частоты свободных колебаний механической системы сопоставляли с частотами, наблюдаемыми оптическими методами, причем при рассмотрении ИК-активных дипольных колебаний вычисленные частоты отождествляли с частотами поперечных колебаний, не взаимодействующих с макроскопическим полем поляризации. Частоты соответствующих продольных колебаний (для тех направлений, в которых происходит разделение колебаний на чисто поперечные и продольные) могли быть определены тогда феноменологически — как нули функции е(у) из классических уравнений дисперсии при использовании либо экспериментально определенных параметров и у, либо, в пренебрежении затуханием, с помощью интенсивностей, вычисленных из полученных при расчете форм колебаний и некоторого набора эффективных зарядов. Следует заметить, что существенная роль расчетов интенсивностей в ИК-спектрах состоит, как было показано в [9, 12, 13], не столько в оценках эффективных зарядов, сколько в контроле достоверности полученных при расчете частот форм колебаний. [c.128]

    Для измерения активности из обеих фаз отбирали по 1 мл растворов без предварительного разделения фаз. Счет проводили в стандартных условиях — при постоянном геометрическом коэффициенте, в стеклянных чашечках одинакового размера на установке типа Б с торцевым счетчиком МСТ-17 ( из бесконечно толстого слоя ), pH измеряли на потенциометре ЛПУ-01 со стеклянным электродом. Оптическую плотность растворов измеряли на спектрофотометре СФ-4А и ФЭК-56. Инфракрасные спектры поглощения снимали на спектрографах ИК-14 и UR-10. Образцы были приготовлены в виде суспензии в вазелиновом масле. [c.228]

    При помощи хроматографии удалось выделить фракции нефти, в которых вращение оказалось повышенным до 28°, и показать, что оптически активное вещество имеет сложную полиметилено-вук1 структуру, содержащую от трех до пяти колец в молекуле. Раньше оптически активному компоненту приписывалось строение стероидов, обладающих характерным ультрафиолетовым спектром, однако хроматографическое разделение фракций показало, что вещества стероидной структуры концентрируются во фракциях, не обладающих оптической активностью. Ближайшая природа оптических компонентов и в настоящее время еще не установлена. По-видимому, в нефтях находятся оптически активные вещества, различающиеся деталями структуры, разбросанные по всем высшим фракциям нефти и имеющие, следовательно, раз [ичные молекулярные веса. Возможно, что все они имеют происхождение от одного и того же начального вещества, так как в сложных циклических молекулах содержится иногда несколько ассиметрических атомов углерода и частичное разрушение исходной структуры едва ли может перевести всю молекулу в неактивную форму. [c.17]

    В присутствии этих реагентов метинный протон а-фенилэтиламина дает сигнал в области 17 м. д. с различием для Я- и 5-антиподов примерно в 0,5 м. д. Эффективное разделение ЯМР-сигпалов антиподов наблюдается также при растворении в оптически активных жидких кристаллах (например, в холестерилхлориде) [173]. Обзор, посвященный вопросу о неэквивалентности спектров ЯМР энантиомеров в хиральных растворителях, см. [174]. [c.166]

    Инфракрасный спектр СО состоит из серии полос поглощения, каждая ии которых имеет два максимума, разделенных интервалом приблизительно в 30 сж Эти пары максимумов соответствуют Р- и Л-ветвям, рассмотренным в гл. X. Пары максимумов часто встречаются в виде дублетов, разделенных интервалом около 105 см , как это показано на рис. 4 [10]. В табл. 4 приведены положения полос поглощения, выраженные в микронах (первый столбец) и волновых числах (второй столбец). В третьем столбце указаны относительные интенсивности полос, а в следующем — средние значения волновых чисел для максимумов, лежащих близко друг к другу. В двух носледних столб цах приведены результаты интерпретации полос, согласно Шеферу [11] и Эйкену [12]. Шефер, приняв изогнутую модель молекулы, пришел к выводу, что максимумы поглощения наиболее интенсивных полос А, В ж С) с относительными интенсивностями соответственно 6, 10 и 10 непосредственно дают три основные частоты колебаний, которые в этом случае должны быть равны 3670, 2352 и 672 jn К подобным же выводам пришел и Деннисон [13]. Эйкен обратил внимание на несовместимость изогнутой модели молекулы двуокиси углерода с теплоемкостью газа. При низких температурах колебательная теплоемкость пренебрежимо мала, а опытные значения вращательной теплоемкости ясно указывают на вращение молекулы, подобное вращению жесткой гантели. Поэтому молекула должна быть линейной. Далее, в случае симметричной линейной трехатомной молекулы оптически активны только две из трех частот. Колебание, совершающееся с частотой (см. рис. 3), не изменяет дипольного момента молекулы (равного нулю) и поэтому не обнаруживается в спектре поглощения, за исключением комбинаций с двумя активными частотами. В связи с этим Эйкен принимает, что две из частот колебаний легко можно найти непосредственно иа положений интенсивных максимумов иогло1цения, а третья встречается только в комбинации. Для наиболее интенсивных полос в областях 15,05 — [c.412]


    Этим методом определено отношение энантиомеров спиртов, аминов, а-оксикислот, сульфоксидов и аминокислот. Растворителями служили а-арилэтиламин при исследовании спиртов и сульфоксидов и 2,2,2-трифторфенилэтанол при исследовании аминов и эфиров аминокислот [22—26]. На рис. 8-11 приведен спектр частично разделенного метилового эфира аланина, обогащенного (5)-энантиомером, в растворе оптически активного 2,2,2-трифторфенилэтанола. Полученные, результаты, дающие величину 17,8% и. э., находятся в довольно хорошем согласии с теоретической величиной 20% и. э. [c.284]

    Для смесей диастереомерных эфиров (й)-МТФК с частично расщепленным оптически активным метилэтилкарбинолом (37) [61%-ный избыток (5 )-(+)-энантиомера] не наблюдалось заметного разделения сигналов МеО- и СГд-грунп в ПМР- и Р-ЯМР-спектрах (рис. 4, а), [c.178]

    В настоящее время разделение наблюдаемых кривых ДОВ для поли-ь-пролина II на два эффекта Коттона не легко интерпретировать теоретически. В спектрах поглощения модельных соединений для остатка пролина наблюдается я я -переход в области 195—200 ммк и слабый п я -переход около 225—235 ммк [40, 56]. Если воспользоваться экситонной теорией в таком виде, как она развита для а-спирали [38], и предположить, что момент перехода для я я -полосы остатка пролина идентичен моменту перехода, наблюдаемому [57] для амидной модели (миристамид), то можно предсказать [40, 58] расщепление я -> я -перехода в мономере на две компоненты при их включении в спираль поли-ь-пролина II. Вычисленное расстояние между этими двумя компонентами составляет 3400 12 ммк) или 4700 см 17 ммк) в зависимости от того, предполагается при переходе взаимодействие монополей [58] или точечных диполей [40]. По-видимому, расчеты, аналогичные тем, которые проводились в недавней работе Тиноко [38а] для я я -перехода в а-спирали, должны привести к дополнительной паре оптически активных полос, расположенных в центре более коротковолновой перпендикулярно поляризованной экситонной полосы. Если относительное разделение двух пар полос такое же, как и для а-спирали, то суммарная система полос для я я -перехода должна быть эквивалентной трем полосам, причем две более длинноволновые компоненты должны иметь разделение, предсказываемое теорией Моффита. Величина сил вращения не была оценена ни для экситонных компонент л -> я -перехода, ни для п я -перехода. Однако Шеллман [55] показал, что сила вращения для и-> я -перехода в поли-ь-пролине II должна быть гораздо меньше, чем вычисленная для а-спирали. [c.259]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Как уберечь сенсибилизатор фотопроцесса — хлорофилл а — от разрушения радикалами хлора С1 Эта проблема сейчас не решена. По-видимому, можно подыскать краситель, который не реагирует с радикалами -С . Иной путь решения проблемы--заменить Ag l другим полупроводником. В последнем случае первичный акт фотопроцесса может быть связан уже не с появлением химически активных атомов, а с фотофизическим процессом возбуждения электрона (в случае и-полупроводника) из валентной зоны в зону проводимости. Локализация электрона проводимости на дефекте полупроводника приведет к пространственному разделению электрона е и электронной вакансии — дырки р. В этом случае первичный химический акт, очевидно, будет осуществляться в приповерхностном слое полупроводник — вода. Так же как и при использовании Ag l, фотопроцесс можно сенсибилизировать к длинноволновому участку оптического спектра. [c.42]


Смотреть страницы где упоминается термин спектры оптически активные для разделения: [c.444]    [c.33]    [c.184]    [c.335]    [c.115]    [c.154]    [c.54]    [c.381]    [c.118]    [c.323]   
Основы органической химии (1968) -- [ c.0 ]

Основы органической химии Часть 1 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Оптическая активность

Оптические спектры,

активное оптически активное



© 2025 chem21.info Реклама на сайте