Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

С и выше

    Неорганические смазки — это продукт загущения жидких масел (минеральных или синтетических) неорганическими материалами. Неорганические смазки вероятно будут перспективными для таких условий работы, в которых мыльные, а тем более углеводородные работать не могут, т. е. при температурах 400—500° С и выше, в глубоком вакууме, в агрессивной среде и т. п. [c.190]

    Современные летательные аппараты имеют ряд гидравлических устройств, в которых рабочими телами являются жидкости, обладающие определенными свойствами. Условия работы жидкостей ь гидравлических системах летательных аппаратов весьма сложные. Они работают в постоянном контакте с различными материалами, из которых изготовлена гидравлическая система, давление жидкостей может достигать 300 кГ/см и более, температура может колебаться от —60 до 50—100 С и выше, что объясняется трением при работе гидроустройств и нагревом всего летательного аппарата в полете. Жидкости гидравлической системы дросселируются с большим перепадом давления через очень малые зазоры, а также подвергаются действию высоких удельных давлений на поверхностях трущихся пар. [c.212]


    В СССР и за рубежом огнеопасность нефтяных топлив классифицируют по температуре вспышки, определяемой в закрытом тигле. В соответствии с этой классификацией топлива широкого фракционного состава типа Т-2 и бензины относят к первому классу огнеопасности, топлива Т-1 и ТС-1 с температурой вспышки 28° С и выше относят ко второму классу. [c.229]

    В связи с возрастанием скоростей самолетов, развитием сверхзвуковой авиации и повышением температуры топлива за счет его аэродинамического нагрева в баках до 120—200 °С и выше, особое [c.29]

    В тех же условиях в продуктах пиролиза этилена содержатся высокомолекулярные олефины — продукт сополимеризации бути — ленов с этиленом. При температурах 600 °С и выше в продуктах термолиза этилена появляются бутадиен и водород в результате дегидрирования бутена—1. [c.32]

    Бициклические нафтены при 600 °С и выше подвергаются дециклизации, деалкилированию и дегидрированию  [c.33]

    Бензины С, и выше содержат 40 — 50 % нафтенов. О —20 % ароматических и являются исключительно качественным сырьем риформинга. [c.228]

    Риформинг (и л а т ф о р м и н г)—процесс преобразования нафтеновых и высокомолекулярных парафиновых в ароматические углеводороды при повышенных температурах и давлениях в присутствии катализатора. Каталитическому риформингу подвергают бензиновые фракции с началом кипения 60 °С и выше и концом кипения не выше 180°С. Фракции с более низким началом кипения (30—60°С) не подвергаются риформированию, поскольку в этой фракции содержатся углеводороды с числом атомов углерода меньше шести, пе способные превращаться в ароматические углеводороды. Для получения высокооктанового бензина используют фракции 85—180°С и 105—180°С при одновременном получении ароматических углеводородов и вы-15—14 217 [c.217]

    Аппарат, нагретый в процессе эксплуатации или подготовки его к ремонтным работам, перед спуском в него людей должен быть охлажден до температуры, не превышающей 30 °С. Если приходится проводить работы при более высокой температуре, то разрабатывают дополнительные меры безопасности (непрерывная обдувка свежим воздухом, применение асбестовых костюмов, теплоизолирующей обуви, частые перерывы в работе и т. п.). Выполнять внутренние работы при 50°С и выше запрещается. [c.220]

    Первое направление характеризуется созданием аппаратов малых емкостей, измеряемых в литрах, на высокие и сверхвысокие параметры (давление до 1000—4000 кгс/см и выше, температура 500—700° С и выше). Такие аппараты используются в специальных производствах (например, для гидротермального синтеза кристаллов) или при проведении научно-исследовательских и экспериментальных работ. [c.220]


    Новым развивающимся методом подвода тепла является нагрев в плазме, т. е. в потоке газообразного теплоносителя (мета-но-водородной смеси, водорода, аргона), нагреваемого до 2000— 3000 "С и выше (ГО ООО—20 ООО °С) электрическим током и содержащего ионизированные частицы — ионы и электроны. Разогрев теплоносителя и создание плазмы происходит в небольшом пространстве между катодом и анодом плазменной горелки. Мощность таких горелок достигает 2000 кВт. [c.137]

    В случае отсутствия горячей воды, илн необходимости поддержания высокой температуры обогреваемой среды (выше 60 °С), или при температуре замерзания продукта от 10 °С и выше в качестве теплоносителя применяют водяной пар от технологических паропроводов низкого давления. [c.304]

    Продолжение табл. 5 Характеристика сырья и остатка (180 °С и выше)  [c.125]

    Уже при температуре масла около 50 °С и выше процесс окисления может протекать достаточно заметно, особенно если масло будет соприкасаться с воздухом в течение длительного времени. [c.70]

    Проведенные исследования по изучению энергетических характеристик нефтяных топлив, отдельных классов углеводородов и раз личных фракций позволили установить, что при наиболее благопри ятных условиях можно будет получить топливо, энергетические характеристики которого будут выше лучших сортов керосина не более чем на 5—7%. Наиболее перспективными в этом отношении являются парафино-нафтеповые углеводороды, выкипающие при температуре 300—350° С и выше. Таким образом, этот путь полу чения высокоэффективных топлив не решает полностью проблемы. [c.91]

    Продуктами процесса каталитического крекинга являются газ, содержащий до 50% (масс.) непредельных углеводородов и до 25% (масс.) изобутана, бензин, легкий и тяжелый газойли (фракции 190—350°С и выше 350°С соответственно). Часть тяжелого газойля после стадии разделения и смесь катализаторной пыли с тяжелым газойлем (шлам) после стадии отделения катализатора возвращаются на стадию реакции. Закоисованный катализатор поступает на регенерацию, а регенерированный возвращается на стадию реакции. Первые две стадии составляют реакторный блок, а последние две — блок разделения установки каталитиче1Ского крекинга (в последующем описании реакторный блок будет условно обозначаться в виде одного квадрата). [c.222]

    I, Разложение тиердого топлива в присутствии воздуха нрн температуре 1000 °С, 2, Разложс1гне твердого тоилнва без доступа воздуха ирн температуре 1000 °С и выше, 3, Нагревание твердого [c.248]

    В реакторах с торкрет-бетопным покрытием в отдельных случаях не обеспечивается эффективй я тепловая защита стенок реактора. Температура наружных стенок реактора достигает 250 °С и выше (проектная 150 °С). Особенно значительное повышение температуры наблюдается при работе с повышенной производительностью в зоне наиболее интенсивных реакций. [c.137]

    Природные газы добывают с чисто газовых месторождений. Они состоят в основном из метана (93 — 99 % масс.) с небольшой примосью его гомологов, неуглеводородных компонентов серово — доро, ,а, диоксида углерода, азота и редких газов (Не, Аг и др.). Газы газоконденсатных месторождений и нефтяные попутные газы от — личаЕ )тся от чисто газовых тем, что метану в них сопутствуют в значр тельных концентрациях его газообразные гомологи С -С и выше. Поэтому они получили название жирных газов. Из них получают легкий газовый бензин, который является добавкой к товарным бензинам, а также сжатые жидкие газы в качестве горючего. Этан, пропан и бутаны после разделения служат сырьем для 1гзфтехимии. [c.61]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]


Рис. 7.7. Кинетика образования основных продуктов пиролиза фракции 85-120 С при 810 С и атмосферном давлении 1 —жидкие продукты (С и выше) 3 — этилен 3 — метан 4 — пропилен/ 5 — этан 6 — бутадиен 7 — бутен (Данные Р.З. Магарил) Рис. 7.7. <a href="/info/24721">Кинетика образования</a> основных <a href="/info/384319">продуктов пиролиза фракции</a> 85-120 С при 810 С и <a href="/info/17581">атмосферном давлении</a> 1 —<a href="/info/219306">жидкие продукты</a> (С и выше) 3 — этилен 3 — метан 4 — пропилен/ 5 — этан 6 — бутадиен 7 — бутен (Данные Р.З. Магарил)
    Сырье. С — алкилированию в нефтепереработке чаще всего подьергают изобутан и значительно реже изопентан (последний является ценным компонентом автобензина (его ОЧИМ = 93). Существенное влияние на показатели процесса оказывает состав алке нов. Этилен практически не алкилирует изобутан, но сульфа — тир 1ется и полимеризуется. Пропилен легко вступает в реакцию с изо()утаном, но октановое число меньше, чем при алкилир(5вании бутиленами (табл.8.9). Высшие алкены (С и выше) более склонны к реакциям деструктивного алкилирования с образованием низко — молекулярных и низкооктановых продуктов. [c.141]

    Установлено, что в зависимости от температурного режима прс цесса взаимодействия углеводородов на катализаторах происходит перемена модификации образующегося углерода. При температурах ниже 800 °С углерод отлагается не только на поверхности, но и в порах катализатора. Выделяющийся при этом углерод напоминает рыхлую аморфную сажу глубоко-черного цвета. В результате происходит объемное зауглероживание и механическое разрушение катализатора. При температурах 900 °С и выше выделяется плотный слюдоподобный углерод, который покрывает тонкой пленкой на[1ужную поверхность катализатора. В результате поверхностного зауглероживания не происходит механического разрушения ката — ли 5атора. [c.161]

    Тепловые ресурсы охлаждающей воды. Уходящая из конденсаторов и холодильников нагретая вода является источником большого количества низкопотенциального тепла. В случае оборотной системы водоснабжения вода поступает в технологические аппараты при 25—26 °С и уходит при 45—50 °С и выше. Размер тепловой энергии, содержащейся в сбрасываемой в канализационную систему воды, зависит от ее расхода. Так, на установке ЭЛОУ — АВТ производительностью 3 млн. т/год нефти охлаждающая вода уносит в канализацию около 70 Гккал/ч низкопотенциального тепла. На охлаждение отработанной охлаждающей воды до первоначальной температуры (25—26°С) в системе оборотного водоснабжения требуется большое количество дополнительной энергии. Кроме конденсаторов и холодильников вода расходуется в электродегидраторах обессоливающей установки (100—110°С), а также подается в барометрические конденсаторы узла вакуумной перегонки мазута (60—70 °С). В настоящее время тепловая энергия горячей воды применения на нефтезаводах не находит. [c.212]

    Сульфиды (СгИвЗСгИб, СзНтЗСзН и т. д.) —жидкие вещества с неприятным запахом. Сульфиды Сг—С имеют низкие температуры кипения — от 37 до 150°С. По химическим свойствам это нейтральные вещества, не реагирующие со щелочами, хорошо растворяющиеся в серной кислоте. При 400 °С и выше сульфиды разлагаются на сероводород и непредельные углеводороды. [c.169]

    Тем не менее имеется ряд патентов на методы сульфидирования катализаторов гидрообессер гваиия, отличающиеся условиями обработки и сульфидирующим агентом. Большая роль отводится сероуглероду [пат. США 3516926], предлагаются меркаптаны (С1—С20) [пат. США 4111796], диметилсульфид [пат.Англин 1553616], растворенные в нефтепродукте, сероводород и низкомолекулярные сульфиды в смеси с водородом [ пат. Японии 53-122692, США 3166491], сероводород, растворенный в нефтепродукте [пат. США 4213850] и пр. Разновидностью сульфидирования сероводородом в смеси с водородом является прием загрузки элементарной серы непосредственно в реактор, на слой катализатора и обработки ее ВСГ при постепенно повышаемой температуре до 200 °С [ 80, пат. США 4177136]. В связи с многообразием методов сульфидирования сформулировать требования по выбору условий обработки однозначно весьма трудно. Особенно разноречивые мнения по влиянию предварительного восстановления катализатора водородом на последующее сульфидирование. Однако в последних публикациях утверждается, что глубокое восстановление водородом, например, при высоких температурах (400 °С и выше) отрицательно влияет на образование комплексов, определяющих активность катализатора [39, 72, 81], но необходимость водорода при активации обязательна [80]. На основе исследований с учетом возможности реализации технологии активации катализатора ряд известных вариантов сульфидирования катализатора можно, в порядке предпочтительности, расположить следующим образом а) смесью сероводорода с водородом б) низкомолекулярным серусодержащим соединением в среде водорода в) низкомолекулярным серусодсржащим соединением в потоке легкого [c.99]

    Выход продуктов, % газ (углеводрроды) сероводород + аммиак фракция С, и выше, м /м  [c.154]

    При температурах от 400° С и выше возможен распад сульфидов по всем вышеприведенным схемам одновременно. В об.ласти средних температур распад диалкилсульфидов протекает в основном с образованием меркаптанов [109]. [c.29]

    Нефти, типичные для II генотипа, встречены в северо-западном обрамлении Прикаспийской впадины за пределами палеотемпературной зоны 60 °С и выше. По-видимому, формирование залежей здесь шло за счет региональной миграции со стороны прилегающей части бортового проги ба впадины. Подобную миграцию УВ можно предположить в пределах северной и северо-восточной частей внутренней зоны бортового прогиба (Уральская, Аксайско-Коблендинская и Бердянская зоны нефтегазо-накопления). [c.162]

    К к было показано выше, на некоторых участках каменноугольные отложения подвергались воздействию благоприятной для нефтегазообразования температуры (60 °С и выше) длительное время — до 305 млн. лет. На отдельных участках каменноугольные отложения подвергались воздействию и более высокой температуры. В подошве толщи С—Р1Э температура до 100 °С в Сарпинском и до 130 °С в Каратонском прогибах отмечается уже к началу кунгурского века, затем она уменьшается. К началу мела подошва С—Р1Э прогревается до 110 °С в Хобдинской зоне, Уильском прогибе и на Жаркамысском выступе. [c.163]

    В случае полиметилциклопентанов гидрогенолиз значительно осложняется реакциями деметилирования и скелетной изомеризации. Далеко идущие перегруппировки углеродного скелета происходят в тех случаях, когда из-за низкой реакционной способности исходной молекулы опыты проводят при 350 °С и выше, например для три- и тетраметилциклопентанов [163], в которых миграция и элиминирование метильных групп способствуют образованию таких циклопентановых углеводородов, которые легче подвергаются гидрогенолизу [350°С, (10% Р1)/А120з] (см. схему на с. 131). [c.130]

    Закономерности превращений ряда н- и изоалканов над алюмоплатинояыми катализаторами с содержанием Pt 0,1—0,6% при 0°С (и выше) и давлении водорода 1,1—2,1 МПа исследовали Синфельт с сотр. [42, 160]. Найдено, что при увеличении размеров молекулы -алканов состава Се—Сз скорость дегидроциклизации заметно возрастает суммарная скорость s- и Сб-дегидроциклизации м-октана примерно в 2,5 раза больше суммарной скорости дегидроциклизации н-гексана. В работах подчеркивается бифункциональный характер применяемого катализатора. Сделан вывод о протекании дегидроциклизации через образование алкенильного карбениевого иона  [c.245]


Смотреть страницы где упоминается термин С и выше: [c.102]    [c.255]    [c.317]    [c.151]    [c.295]    [c.225]    [c.123]    [c.205]    [c.206]    [c.133]    [c.10]    [c.100]    [c.85]    [c.81]    [c.125]    [c.162]    [c.164]    [c.173]    [c.71]   
Смотреть главы в:

Методы анализа и контроля в производстве поверхностно-активных веществ -> С и выше

Методы анализа и контроля в производстве поверхностно-активных веществ -> С и выше




ПОИСК







© 2025 chem21.info Реклама на сайте