Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленное применение реакций циклизации

    Крекинг газойля. Основная область применения цеолитных катализаторов в промышленности связана с процессом каталитического крекинга дистиллятов первичной перегонки нефти, содержащих алифатические, циклоалифатические (нафтеновые), олефиновые и ароматические углеводороды. При каталитическом крекинге нефтяных фракций протекают реакции дезалкилирования ароматических соединений, крекинга парафинов и олефинов, перераспределения водорода и циклизации олефинов. С основными представлениями о механизмах реакций, которые вносят вклад в процесс крекинга нефтяного сырья на цеолитных катализаторах, мы уже познакомились в предыдущих разделах этой главы. Однако использовать эти представления для анализа превращений отдельных классов углеводородов в крекинге все-таки очень трудно, так как продукты крекинга отличаются очень сложным составом. Первые работы Планка и Росин-ского [161, 297] по крекингу газойля, выкипающего в интервале 260—400° С, показали, что замена алюмосиликатного катализатора на цеолиты типа X дает следуюгцие преимущества 1) более высокую активность, которая сохраняется даже при повышенных содержаниях остаточного кокса, 2) более высокую селективность по бензину (Сз+) и снижение выхода газа (С4-) и кокса, 3) более высокую стабильность при термических и термопаровых обработках, характерных для процесса регенерации катализатора. Эти преимущества становятся еще более заметными при использовании в качестве катализаторов кальций-аммонийной и редкоземельно-аммонийной форм цеолита X. Моску и Моне [148] исследовали влияние жесткости термических и термопаровых обработок катализаторов РЗЭ-Х и РЗЭ- на эффективность крекинга газойля, выкипающего при 272—415° С. Они пришли к выводу, что удаление наиболее сильных кислотных центров в высокотемпературных условиях благоприятно сказывается на повышении выходов бензина. Для того чтобы рассмотреть причины повышения селективности по бензину, обратимся к последовательности превращения газойля, кинетическая модель которого [схема (71)] была разработана Уикманом и Нейсом [298]. В соответствии с этой моделью при первичном крекинге (эта стадия на схеме обозначена символом происходит образование бензина и некоторого количества газа, а также кокса, тогда как при вторичном крекинге (А ,) расщеплению подвергается бензин. [c.109]


    Выше были указаны особенности процессов этого типа. Основными реакциями, характерными для этих процессов, являются реакции циклизации (ароматизации) и дегидрогенизации. Эти реакции идут с поглощением большого количества тепла подвод тепла во время реакции представляет сложную задачу нри технологическом оформлении этих процессов. Имеется несколько процессов, которые относятся к этому типу и получили промышленное применение. [c.282]

    Интенсивность любой из этих реакций может изменяться в весьма широких пределах в зависимости от продолжительности, температуры и парциального давления водорода. Потенциально при соответствующем выборе катализатора и условий водород способен тем или иным способом взаимодействовать с любым углеводородным компонентом нефти практически при любых температуре и давлении. Обычно температура промышленных процессов не превышает приблизительно 540° С, а давление — около 700 ат. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит также разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием алкенов и ароматических углеводородов. Хотя интервалы температур, при которых проводят термический крекинг и гидрирование, практически совпадают, применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные термические реакции, которые неизбежно протекали бы при обычных условиях. Повышение давления благоприятствует образованию связей углерод — водород и насыщению кратных связей углерод — углерод. При достаточно низких давлениях алканы претерпевают дегидрирование до алкенов и циклизацию в ароматические углеводороды цикланы дегидрируются до алкенов и ароматических углеводородов, а пятичленные цикланы изомеризуются и дегидрируются до ароматических. Практически при любых условиях гидрирования в той или иной степени происходит изомеризация углеводородных цепей и колец. Выбор надлежащих условий и применение достаточно активных катализаторов позволяют достигнуть преобладания любой из рассмотренных реакций, т. е. высокой избирательности превращения углеводородов в целевые продукты. [c.127]


    Одним из типов химической модификации высокомолекулярных соединений является реакция внутримолекулярной циклизации. Она может проходить в тех случаях, когда в состав макромолекул входят реакционноспособные группы, расположенные в цепи на расстояниях, необходимых для образовани.ч при их взаимодействии пяти- или шестичленных циклов. Такие группы есть в макромолекулах диеновых полимеров, поэтому эти полимеры в определенных условиях легко циклизуются, превращаясь в смолоподобные термопластичные вещества, находящие промышленное применение в качестве связующих в лаках и красках (особенно типографских), клеев, а также для получения озбностойких резин, водостойких и хорошо полирующихся покрытий. [c.58]

    Катализатор — фосфорная кислота, нанесенная на кизельгур,— имеет широкое промышленное применение для реакций полимеризации и алкилирования [1]. Изучение глубокого алкилирования ароматических углеводородов олефинами показало, что на фосфорнокислотном катализаторе в определенных условиях могут идти реакции циклизации олефинов с образованием одно-, двух- и трехкольчатых ароматических углеводородов. [c.110]

    Реакции циклизации находят применение главным образом в нефтеперерабатывающей промышленности, где широко используются зюзможности процесса каталитического риформинга, в котором циклизация совмещается с дегидрированием шести-члеиных нафтеновых углеводородов. [c.300]

    Из приведенных выше данных видно важное значение реакции циклизации для различных отраслей химической промьпп-леппости, в частности для нефтепереработки. За 18 лет, прошедших со времени открытия реакции циклизации, пайдепы и неук-лопио растут многочисленные важные направления ее использования. Промышленные исследования по изысканию новых областей применения этой реакции продолжаются и в настоящее время. [c.303]

    Промышленные интересы в отношении катионной соиолимеризации были сосредоточены в основном на моно- и диолефинах. Иммергут, Коллман и Малатеста [82] провели систематическое исследование соиолимеризации пропилена и изопрена под действием хлористого алюминия в хлористом этиле. Сополимеры анализировали на изопрен путем определения двойных связей. При повышении концентрации катализатора увеличивался выход и понижалась растворимость полимеров. Исследования методом ИК-снектро-скопии циклизации не обнаружили. Оценка отношения содержания цис-и транс-звеньев в сополимерах была неубедительной. Найденные константы сополимеризации оказались равными 0,23 для пропилена и 0,50 для изопрена, однако простое истолкование этих величин затруднительно, так как возможны четыре способа реакции изопрена, а именно 1,2-, 3,4-, 1,4-и циклизация по типу, предложенному Медведевым [11, 12]. Физические свойства полимера заметно зависели от таких условий опыта, как концентрация катализатора и состав смеси мономеров. Следует также отметить, что механизм Фонтаны и Киддера [10] был первоначально применен к катионной полимеризации пропилена, и поэтому в действительности реакция может не включать обычного бимолекулярного роста (предполагаемого при расчете констант сополимеризации), но, возможно, к ней применима интерпретация в соответствии с одним из уравнений, приведенных в разд. II. [c.493]

    Трэсти в статье Катализаторы играли важную роль в военной промышленности говорит о реакции циклизации как о процессе, уже осуществленном в промышленности. Он говорит Другим применением является дегидрогенизация гептана или иного парафинового углеводорода для получения толуола и других ароматических углеводородов. Например, низкооктановую нафту пропускают над гранулированным катализатором при 540° в токе водорода и получают 80% бензина с октановым числом 80 и высоким содержанием бензола и толуола . [c.255]

    Возможность присоединения к каучуку азотсодержащих соединений (описанных выше) получила свое развитие в разработке промышленных методов модификации каучуков и резин, в частности, с применением комплексов двухатомных фенолов и аминометилированных соединений [8, 44]. Эти реакции, как правило, протекают по молекулярному механизму и, в отличие от радикальных и ионных реакций, не сопровождаются нежелательными побочными процессами циклизации, деструкции, приводящими к потере высокой эластичности исходного каучука. [c.164]

    Хлористый алюминий занимает в превращениях органических соединений совершенно особое место. Этот эффективный реагент с успехом использовался и используется для осуществления весьма большого числа разнообразных реакций. Он активирует такие превращения, как алкилирование, деалкилирование, гидрогенизацию, дегидрогенизацию, циклизацию, обессеривание, полимеризацию, конденсацию, крекинг, изомеризацию и ряд других. Большое значение хлористый алюминий имеет не только в лаборатории, но и в ряде промышленных процессов, Бо.иьшая реакционная способность безводного хлористого алюминии, образование им с органическими соединениями комплексов, в которых органические молекулы приобретают новые свойства вступать в химические реакции,— все это приводит к тому, что, несмотря на имеющееся огромное число исследований в этой области, почти в каждом вновь выходящем выпуске химических журналов описываются новые попытки по изучению действия хлористого алюминия на разнообразные органические соединения, нередко приводящие к интересным результатам. Большое число патентов по применению хлористого алюминия в промышленности органической химии подтверждает важное промышленное значение хлористого алюминия. [c.5]



Смотреть страницы где упоминается термин Промышленное применение реакций циклизации: [c.205]    [c.116]    [c.157]    [c.291]    [c.157]    [c.241]    [c.596]    [c.596]    [c.13]   
Смотреть главы в:

Катализ в нефтехимической и нефтеперерабатывающей промышленности Книга 1 -> Промышленное применение реакций циклизации




ПОИСК





Смотрите так же термины и статьи:

Применение в промышленности

Реакции циклизации



© 2025 chem21.info Реклама на сайте