Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Та, Сг, Mo, W, Mn, Re, Fe, Со, Ni, Os, S, Y, La, лантанидов и актинидов) (стр

    Используя термины лантаниды , актиниды , следует помнить, что лантан и актиний не принадлежат к их числу. [c.63]

    Методы анализа чистых металлов со сложными спектрами и их окислов (И, 2г, Н , V, Ь, Та, Сг, Мо, Мп, Не, Ре, Со, N1, Pt, 8с, V, лантанидов, актинидов) [c.372]

    Работы по исправлению и уточнению атомных весов некоторых элементов, уточнению формул их окислов, максимальных валентностей в соединениях, положение некоторых из них (лантанидов, актинидов) в системе. [c.64]


    Спектры поглощения в водных растворах и в кристаллах также показывают поразительную аналогию между лантанидами и актинидами в расположении по.лос поглощения. Доказывается эта аналогия и однотипным характером изменения магнитной восприимчивости при переходе от первого к последующим лантанидам (актинидам). [c.220]

    Лантаниды, актиниды Сульфоксиды НгЗО (R — алкил, фенил, бензил), нефтяные сульфоксиды Сульфоны 2-12 [7, 9, 142, 156, 159, 161] [c.27]

    Ве, Мй, 8Ь, Зс, V, Ьа, лантанидов, актинидов большинства остальных элементов [c.511]

    Утверждены некоторые групповые названия элементов. Так, элементы Не, Ые, Аг, Кг, Хе, Кп принято называть благородные газы элементы Р, С1, Вг, I, А1 — галогены элементы О, 5, Зе,, Те, Ро — халькогены элементы Ыа, К, РЬ, Сз, Рг — щелочные элементы элементы Са, 5г, Ва, Ка — щелочноземельные элементы элементы с порядковыми номерами 57—71 (от Ьа до-Ьи включительно) — лантаноиды (до 1965 г. — лантаниды) и элементы 89—103 (от Ас до Ьг включительно) — актиноиды (до-1965 г. — актиниды). Элементы, у атомов которых заполняется -подуровень, называются -элементами (переходными элементами). Аналогично применяют названия -элементы, р-элемен-ты, /-элементы. Все элементы принято условно разделять на металлы и неметаллы (термин металлоиды запрещен). [c.22]

    Одним из важнейших классов химических соединений являются комплексные соединения ионов металлов с различными полярными молекулами и ионами. Последние в химии комплексных соединений называют лигандами. Связь между центральным ионом и лигандом называется координационной связью. Существенной особенностью координационной связи является участие в ее формировании ( -орбиталей центрального иона, а в случае лантанидов и актинидов также и /-орбиталей, что приводит к сильной делокализации связи и существенному влиянию связей металл — лиганд друг на друга. [c.29]

    Отличие спектров актинидов от спектров лантанидов обусловлено тем, что они в ряде случаев проявляют себя не только как /-, но и как -элементы благодаря более прочному связыванию -электронов. В актинидах увеличивается спин-орбитальное взаимодействие, поэтому расположение уровней часто отличается от такового для связи 1—5 и приближается к типу — . [c.226]

    Для элементов первого переходного периода осуществляются обычно соотношения 2 и 3 (предельные случаи слабого и сильного полей), для лантанидов — схема 1 с ЭСО —Д . Во втором и третьем переходных периодах осуществляются схемы 5 и 6, у актинидов — схема 4. [c.231]

    У лантанидов и некоторых актинидов влияние поля лигандов на /-электроны резко уменьшено за счет экранирования внешней благородногазовой оболочкой. В этом случае ЭСПЛ меньше Д и ЭСО. [c.236]

    Спектры трехзарядных ионов актинидов напоминают спектры лантанидов, но поглощение актинидов гораздо сильнее. Проявляется также сходство между ионами различных актинидов с одинаковым числом /-электронов, несмотря на различие в заряде  [c.251]


    Элементы всех остальных побочных групп имеют один или несколько электронов на нижнем -уровне, а лантаниды и актиниды на /-уровне. Все они имеют невысокие потенциалы возбуждения последних линий, которые расположены в ультрафиолетовой области, а у некоторых элементов — в видимой области спектра (Сг, и и W и др.). Строение атомов лантанидов и актинидов отличается от атомов других элементов тем, что частично заполненный уровень (4/ или 5/) относится к глубокой внутренней оболочке. [c.46]

    Открытие гафния позволило установить расположение лантанидов в периодической системе все они, как характеризующиеся достройкой глубоко лежащего электронного слоя, могли быть отнесены к одной и той же, а именно к третьей группе. Подобным же образом к треть е й группе относят в настоящее время и актиниды, т. е. элементы, следующие за актинием (№ 89). Одновременно и лантаниды, и актиниды выносят в отдельные строки (что позволяет избежать излишнего удлинения табличной формы периодической системы). [c.221]

    Если бы нейтральные атомы и элементарные ионы (т. е. ионизированные атомы) представляли собой бесструктурные шары, свойства их определялись бы величинами только зарядов и радиусов. Однако в действительности громадное значение имеет структура электронных оболочек. Как правило, решающую роль для определения важнейших химических свойств играет при этом самая внешняя оболочка. Уже гораздо менее резко выражена зависимость свойств атомов и ионов от второго снаружи слоя (причем влияние его структуры сказывается тем слабее, чем больше электронов в самом внешнем и меньше их в рассматриваемом втором). Значение структуры еще глубже лежащих электронных слоев обычно (кроме атомов лантанидов и актинидов) сводится почти к нулю. Поэтому при выделении аналогов можно в первом приближении считаться со структурой только внешней оболочки, учитывая особенности и второй лишь по мере надобности (главным образом в атомах переходных металлов). [c.233]

    Сплошной чертой соединены аналоги главных подгрупп, а пунктирной — аналоги побочных подгрупп, лантаниды и актиниды. [c.139]

    В матрицах получены такие нестабильные в нормальных условиях частицы, как Р1(СО)4, Р<1(СО)4, есть доказательства существования карбонилов лантанидов, актинидов, меди, серебра, золота, алюминия, германия и олова. При конденсации атомов никеля в азот-аргопные матрицы обнаружены комплексы N (N2) , где п= 1- -4. Частицы типа МО2 и М(02)2 образуются при конденсации N1, Р1 и Рс1 в матрицу О2. [c.408]

    Основные научные работы посвящены физико-химическому анализу солевых систем с целью выявления условий их образования и способов переработки, а также развитию термографии и радиохимии. Выполненные им (1927— 1934) исследования природных солей послужили научной основой для строительства Кучукского сульфатного комбината. В процессе термографических исследований открыл боратовую перегруппировку и установил неравновесное состояние многих комплексных соединений платинидов (цис-соет-нений, димеров и др.). Установил четыре типа твердых растворов солей редкоземельных элементов. Его работы по теории экстракции неорганических соединений выявили характер нижней критической точки области расслоения (распад клатратов) и позволили рекомендовать новые и эффективные экстрагенты для лантанидов, актинидов, ряда цветных и благородных металлов. Впервые использовал результаты рентгеноспектральных исследований экстрагентов для установления характера связей с извлекаемыми веществами. [22] [c.363]

    Подавляющее большинство известных гидридов металлов получено непосредственно из металлов и водорода препаративные методики несколько различаются в зависимости от термодинамики и кинетики отдельных реакций. В случае солеобразных гидридов, особенно гидридов щелочных и щелочноземельных металлов, реакции, как правило, идут в одном направлении, и в продукте, остывшем до комнатной температуры, обнаруживается только одна фаза гидрида. Б случае металлонодобных гидридов, т. е. гидридов семейства лантанидов, актинидов, металлов группы титана и группы ванадия, гидрида палладия и т. д., методы синтеза почти одинаковы. Однако состав и структура образующихся фаз значительно сильнее зависят от условий синтеза, поэтому для синтеза определенного гидрида нужно знать диаграмму состояния системы металл — водород. В этой главе рассмотрены в основном солеобразные гидриды, т. е. гидриды щелочных и щелочноземельных металлов, за исключением бериллия, а также гидриды некоторых лантанидов (еврония и иттербия). [c.222]

    В качестве примера обратимся к статье, напечатанной в 1961 г. ...следовало бы обратить внимание на проведение систематических исследований, имеющих целью создание и разработку стереохимии лантанидов, актинидов и щелочноземе.льных элементов. Подобные работы уже начаты в СССР в Радиевом институте и в ИОНХ. При их дальнейшем развитии необходимо гармонично сочетать исследования чисто химического характера с широким исиользованием физических методов определения структуры [18]. Аналогичные пожелания высказаны Гринбергом также в недавно вышедшем третьем издании его монографии [19]. [c.37]


    Широкое развитие и применение хроматографических методов анализа объясняется весьма большой гибкостью и легкой изменяемостью условий осуществления хроматографического процесса при различной физической основе (адсорбция, ионный обмен, распределение, осаждение, комплексообразование, редоиспроцеосы, электронообменные смолы, воздействие теплового или электрического поля и другие возможные случаи). Это позволяет использовать метод для решения ряда практически важных вопросов 1) полного разделения наиболее сложных смесей, например аминокислот 2) испытаний веществ на их однородность 3) концентрирования рассеянных элементов (золота, серебра) 4) разделения лантанидов, актинидов 5) идентификации сплавов (маркировки сплавов)  [c.22]

    Еще более мощным инструментом для определения следов элементов в водах на уровне 1 нг/л является ИСП-МС высокого разрешения, позволяющий избежать наложения линий молекулярных ионов, который применяют для определения лантанидов, актинидов и других элементов в водах без предварительного концентрирования на уровне 1 ppt [100 - 101]. ИСП-МС хорошо сочетается с различными приемами концентрирования, используемыми в практике ААС и АЭС (генерация гидридов и холодного пара), поэтому имеется резерв для дальнейшего снижения пределов обнаружения элементов, хотя при этом может возникнуть проблема контрольного опыта. Электротермическое испарение перед вводом пробы в ИСП-МС позволяет проводить прямое определение тяжелых металлов в снегах Арктики, предварительное дистилляционное концентрирование обеспечивает абсолютные пределы обнаружения на уровне 1 фемтограмма (10 г) [102]. [c.21]

    Разделение актинидов и лантанидов. Из сильноконцентрированных растворов HNO3 или НС1 трибутилфосфат экстрагирует трехвалентные актиниды [439, 440], тогда как лантаниды в этих условиях менее растворимы. Высокие коэффициенты распределения получаются при высаливании водной фазы. [c.442]

    У лантанидов и актинидов незаполне 1ной оказывается третья снаружи оболочка —/-орбиталь с1- и /-орбитали также могут участвовать в образовании связей. ст-Связи атома углерода с переходными элементами непрочные и поэтому соединения, образовавшиеся только за счет внешних электронов, неустойчивы. Особенно малоустойчивы соединения алифатического ряда. Производные ароматического ряда более стабильны. [c.334]

    Назва11ия лантаниды и актиниды заменены на лантаноиды и актннопди . Все инертные элементы, гал01 ены, халькогены, а также N. Р, Ах, Н, С, 81, Ое и В условно называют — неметаллические элементы. Все остальные элементы условно называются металлическими элементами. [c.273]

    Одним из основных принципов, которым руководствавался Д. И. Менделеев при построении периодической системы, было предоставление каждому химическому элементу собственной клетки в таблице. Однако при размещении в периодической системе элементов середин больших приодов он отступил от этого правила и поместил в каждой клетке по три элемента. Основанием для такого объединения было большое сходство авойств элементов, имеющих близкие атомные массы. Возникло три триады — железа, палладия, платины. Расположение в одной клетке периодической системы нескольких элементов, сходных по свойствам, в дальнейшем нашло развитие ученик и последователь Менделеева Богуслав Браунер (долгое время был профессором Пражского университета) разместил все спутники церия (по Менделееву) в одной клетке периодической системы вместе с церием, подчеркнув тем самым близость химических свойств этих элементов [1]. Впоследствии все РЗЭ, следующие за церие.м (и сам церий) стали помещать в одной клетке периодической системы вместе с лантаном (лантаниды) то же относится и к актинидам (см. с. 86—230). [c.110]

    Ас более всего похож на лантаниды. Так, он имеет степень окисления только -ЬЗ и по многим свойствам подобен Ьа. Напротив, ТЬ и Ра проявляют лишь ограниченное сходство с лантанидамн, а также и с другими актинидами. Их поэтому лучше рассматривать как самые тяжелые члены подгрупп Т1 (Т1, 2г, НГ) и V (V, ЫЬ, Та) соответственно. Элементы Ы, Кр, Ри, Ат химически близки между собой и различаются в основном только относительной устойчивостью их степеней окисления, изменяющихся от +3 до +6 (и -f7). Наконец, только самые тяжелые актиниды сходны с лантанидамн. Так, Рт и Ьг подобны Ьи. [c.231]

    Актиниды — элементы, в атомах которых, как и в атомах лантанидов, подуровень / заполняется электронами, но не четверто- [c.138]

    ГО, а ПЯТОГО слоя. У элементов 93—103 распределение электронов подобно распределению вышестоящих в таблице лантанидов 61 — 71. Шесть валентных электронов урана распределяются по слоям так 5 6(1 75 . Для пяти валентных электронов протактиния (91) и четырех валентных электронов тория (90) возможны по две комбинации распределения электронов для Ра — 5/ 6ii 7s или 5/ 6 75 и для ТЬ — 5/ 6ii 7s или 6сР7з . Актинидов известно 14 (90—103). [c.139]


Смотреть страницы где упоминается термин Та, Сг, Mo, W, Mn, Re, Fe, Со, Ni, Os, S, Y, La, лантанидов и актинидов) (стр: [c.380]    [c.159]    [c.372]    [c.385]    [c.126]    [c.237]    [c.55]    [c.483]    [c.271]    [c.84]    [c.101]    [c.112]    [c.380]    [c.380]    [c.380]    [c.31]    [c.345]    [c.19]   
Смотреть главы в:

Спектральный анализ чистых веществ -> Та, Сг, Mo, W, Mn, Re, Fe, Со, Ni, Os, S, Y, La, лантанидов и актинидов) (стр




ПОИСК





Смотрите так же термины и статьи:

Актиниды

Лантаниды



© 2025 chem21.info Реклама на сайте