Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы определения структуры молекул

    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]


    Амилоза и амилопектин являются а-/)-(1->4)-связанными глю-канами [см., например, (1)], однако в амилопектине, имеющем разветвленное строение, в точках ветвления (3) имеются дополнительно а-/)-(1->6)-связи. Это было известно уже много лет назад из результатов анализа методом метилирования и гидролиза. При кислотном гидролизе кукурузного и рисового крахмала, выделенных из зерен в стадии восковой спелости, обнаружено, что в их состав входит заметное количество /)-глюкозо-6-фосфата [84]. Последующий анализ показал, что в амилопектине в среднем один из шести остатков D-глюкозы фосфорилирован. При метилировании амилозы и последующем гидролизе в качестве основного продукта образуется 2,3,6-три-0-метил-0-глюкоза и менее 0,4 % 2,3,4,6-тетра-О-метил-О-глюкозы, происходящей из невосстанавливающего концевого остатка, т. е. молекула амилозы линейна и ее единичная цепь состоит из 200—350 остатков D-глюкозы. Определенная осмотическим методом молекулярная масса соответствует такой длине цепи [85]. Однако анализ неразветвленной структуры достаточно сложен из-за небольшого числа концевых остатков по сравнению с общим числом остатков, образующих цепь, а также из-за деградации разрушение одной связи может вдвое уменьшить длину цепи. Физические методы определения длины цени, при условии использования независимых методов для определения гомогенности препарата, дают большие значения длины молекул амилозы, чем значения, полученные химическими методами. Анализ методом светорассеяния и ультрацентрифугирования показывает, что длина цепи молекулы амилозы часто достигает 6000 моносахаридных звеньев. Обработка амилозы р-амилазой показала, что молекула линейна единственным продуктом расщепления была мальтоза. Изучение действия нуллуланазы и других амилолитических ферментов на различные амилозы показало, что их молекулы содержат некоторое количество разветвлений, присоединенных к основной цепи а-(1->б)-связями [63,64]. Гидродинамическое поведение фракций амилозы также свидетельствует о том, что амилоза в некоторой степени является разветвленной. [c.236]

    Масс-спектроскопия. Масс-спектральный метод анализа основан на ионизации потоком электронов в паровой фазе под глубоким вакуумом исследуемой углеводородной смеси. Образующийся при этом поток ионов в магнитном поле делится на группы в зависимости от их масс. Ионизацию ведут таким путем, что происходит не только ионизация, но и распад молекул углеводородов с образованием осколочных ионов. Между структурой соединения и его масс-спектром существуют определенные зависимости, которые и положены в основу количественного анализа этим физическим методом. Для каждого класса углеводородов характерно образование определенного ряда осколочных ионов. В магнитном поле, в зависимости от массы и заряда, полученные ионы движутся по различным траекториям. В конечном итоге ионы направляются на фотопластинку, и на ней получается масс-опектр. Каждый углеводород дает на масс-спектрограмме свои характерные полосы, по которым ведется в дальнейшем расшифровка спектрограмм. [c.62]


    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, испол ьзуемых хими ками -органи ками. Элементарное знакомство с важнейшими из них осуществляется уже в общем курсе и практикуме по органической химии. Современные учебники по органической химии содержат основные сведений о физических методах структурного анализа, а иногда — примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, иноракрасных и электронных спектров. Для более глубокого изучения физических методов и систематического развития необходимых практиче-ск 1Х навыков служат специальные циклы лекций, лабораторные и семинарские занятия для студентов старших курсов и аспирантов. Литература на эту тему весьма многочисленна и разнообразна по содержанию и уровню изложения. Однако учебных пособий, которые служили бы для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул, явно недостаточно, особенно сборников примеров и упражнений с иллюстрациями, точно воспроизводящими в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре. Такие пособия необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих расшифровку молекулярных спектров. Данная книга [c.3]

    Глава вторая ФИЗИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ МОЛЕКУЛ [c.129]

    По окончании второго этапа рас шифровки спектра ПМР исследователь располагает некоторым числом выявленных по спектру структурных фрагментов (водородсодержащих радикалов). Задача последующего (завершающего) этапа определения структуры состоит в компоновке этих фрагментов таким образом, чтобы их свободные валентности оказались насыщенными, а окончательная структура полностью соответствовала всей совокупности сведений об исследуемом веществе. При этом надо помнить, что сам по себе спектр ЯМР, вообще говоря, не несет информации о числе содержащихся в молекуле одинаковых фрагментов с магнитными ядрами. Кроме того, надо учитывать, что спектр, полученный для данного изотопа, обычно не дает сведений или дает лишь косвенную и неполную информацию о частях молекулы, не содержащих таких ядер. По указанным причинам даже после исчерпывающего анализа спектра ПМР по всем параметрам может остаться некоторая неопределенность в установлении структурной формулы. Для устранения этой неопределенности, как и при использовании других физических методов, требуется привлечение дополнительной информации, прежде всего брутто-формулы. Во многих случаях большое значение имеют такие легко доступные сведения, как приблизительная моле- [c.16]


    ФИЗИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ МОЛЕКУЛ [c.62]

    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]

    Согласно теории химического строения А. М. Бутлерова каждая органическая молекула имеет строго определенную структуру. Эта теория указала химические методы, с помощью -которых можно установить строение молекул. Химические методы применяются и сейчас, но они все более уступают место физическим методам установления структуры, которые дают возможность изучить особенности строения молекул, не определяемые химическими способами (точные значения расстояний между атомами и углов между связями, распределение электронной плотности в молекуле и др.). [c.62]

    Рассмотрим физические основы важнейших методов определения структуры молекул органических соединений. Эти методы называют физическими методами исследования. [c.101]

    Исследование химиками-спектроскопистами достаточно сложных органических молекул, начавшееся приблизительно с 1935 года, распространилось на ближнюю инфракрасную область, и, пожалуй, ни один из физических методов определения структуры не развивался с такой быстротой, как инфракрасные спектры поглощения и раман-спектроскопия. Инфракрасные спектры обладают существенными преимуществами перед спектрами ближней ультрафиолетовой и видимой областей, поскольку они пригодны для соединений любого типа и дают значительно больше сведений о структуре однако недостатками этих спектров являются большая сложность и значительно меньшая возможность теоретического истолкования с помощью приближенных методов. Действительно, применение инфракрасной спектроскопии для качественного структурного анализа сложных молекул оказывается почти полностью эмпирическим. [c.333]

    В таких случаях на помощь химическим методам, применение которых всегда связано с более или менее глубокими изменениями в строении молекул, в качестве ценного дополнения приходят физические методы определения строения. Применение этих методов не вызывает изменения структуры молекул исследуемого вещества. При применении физических методов пользуются в первую очередь данными, полученными чисто эмпирическим пУтем в результате изучения физических свойств соединений, строение которых точно установлено химическим путем. Таким образом, накапливается обширный фактический материал эмпирического характера, который можно привлекать в отдельных случаях, когда химический метод оказывается неприменимым. Такие приемы ранее неоднократно использовались. В качестве примера можно привести установление строения лабильных аллилгалогенидов (т. I, стр. 300). Возникает ли сначала третичный или же первичный бромид при присоединении бромистого водорода к изопрену [c.7]

    Инфракрасная спектроскопия в течение ряда лет является одним из самых полезных и плодотворных физических методов определения структуры небольших молекул. Она давно применяется также для исследования больших молекул и, в частности высокомолекулярных природных и синтетических веществ. Успехи инфракрасной спектроскопии в этой области были так велики, что в настоящее время она широко применяется наряду с другими методами, например, рентгеноструктурным анализом и ядерным магнитным резонансом. [c.496]

    Рентгеновская степень кристалличности не всегда совпадает и не должна в принципе совпадать со степенями кристалличности, определенными другими физическими методами ИКС, ЯМР, дилатометрией, ДТА и др. Дело в том, что разные физические методы исследования структуры вещества основаны на наблюдении разных явлений, происходящих в веществе при его взаимодействии с инструментом исследования. Поэтому, применяя определенный физический метод, мы характеризуем вещество с какой-то определенной стороны. Так, степень кристалличности, измеренная методом ЯМР динамическая степень кристалличности), говорит о доле менее подвижных молекул в образце по отношению к более подвижным или всем молекулам. В ИК-спектре поглощения полимера измеряется интенсивность определенных полос поглощения, которая пропорциональна числу взаимодействующих групп (например, СНг в полиэтилене), находящихся в кристаллической части образца. Рентгеновские методы позволяют характеризовать степень геометрического порядка или беспорядка в расположении макромолекул. [c.10]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, используемых хими-ками-органиками. Элементарное ознакомление с важнейшими из них предполагается уже при прохождении общих курсов и практикумов по органической химии. Современные учебники органической химии содержат поэтому основные сведения о физических методах структурного анализа, а иногда в них даются также отдельные примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, инфракрасных и электронных спектров. Более глубокое изучение физических методов и систематическое развитие необходимых практических навыков осуществляются в специальных циклах лекций, лабораторных и семинарских занятиях для студентов старших 1 урсов и в аспирантуре. Используемая для этой цели литература весьма многочисленна и разнообразна по содержанию и уровню изложения, предмета. При этом, однако, ощущается недостаток учебных пособий для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул при структурном анализе. Особенно нужны сборники примеров и упражне ний, точно воспроизводящих в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре, их особенности и пропорции. Такие материалы необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих использование молекулярных спектров для установления структуры. Наша книга написана с целью восполнения пробела в существующей литературе и отражает опыт преподавания физических методов исследования органических веществ студентам IV и V курсов химического факультета Ленинградского университета, специализирующимся по теоретической и синтетической органической химии, органическому анализу, химии природных и высокомолекулярных соединений. [c.3]

    В течение последних лет все больщее значение приобретают физические методы определения кремния, среди которых наиболее популярны атомно-абсорбционный и атомно-эмиссионный, а также рентгено-флуоресцентный методы анализа [309]. На первый взгляд физические методы имеют значительные преимущества перед химическими, так как они экспрессны и не требуют предварительной минерализации пробы. Более подробное рассмотрение этих методов в приложении к анализу органических соединений позволяет точнее определить область, где их использование, безусловно, целесообразно. Для атомноабсорбционного и, атомно-эмиссионного методов характерны помехи от матричных эффектов и от структуры молекулы. При анализе атомно-абсорбционным методом возникают затруднения также и для веществ, образующих соединения, устойчивые в пламени. Рентгено-флуоресцентный анализ экспрессен и удобен при одновременном определении нескольких элементов. Матричные эффекты здесь также следует учитывать. К преимуществам этого метода относится его недеструктивность, т. е. возможность анализа пробы без ее разложения или растворения, а также отсутствие надобности в пробоподготовке, если в распоряжении аналитика имеется достаточное количество вещества (сотни миллиграммов). [c.166]

    Разумеется, метод наложения валентных схем, использующий различные варианты представления волновой функции электронов в молекуле, например, для СвНв — менее точный (1П.66) и более точный (111.67), является лишь математическим приемом. Истинное распределение электронной плотности в молекуле, находящейся в данном энергетическом состоянии, вполне определенное и единственное, никаких изменений в нем не происходит. Поэтому неправильно было бы считать, что бензол содержит смесь молекул, находящихся в пяти различных состояниях, или что структура молекул, определяющая свойства этого соединения, является наложением (резонансом) пяти реально существующих структур. Наложение валентных схем нельзя считать физическим явлением. Это способ квантовомеханического рассмотрения состояния электронов, движение которых не локализовано около определенной пары атомов. Данный прием используется только в методе валентных связей и не фигурирует в другой квантовохимической теории — методе молекулярных орбиталей, хоторыи мы рассмотрим в дальнейшем. [c.177]

    В последнее время хроматографический метод начали применять для определения ряда физических и физико-химических свойств индивидуальных веществ, например относительной скорости движения хроматографических полос, положения вещества в сорбционном ряду, теплоты сорбции, изотермы сорбции. Многие из этих свойств связаны с другими важными физическими характеристиками вещества и структурой молекул, поэтому могут быть использованы для определения этих характеристик. [c.60]

    В настоящее время по мере того, как изучение состава нефти продвигается в область соединений с большим молекулярным весом, определение индивидуальных углеводородов становится почти безнадежным. Даже путем комбинации химических и физических методов труднс, а часто и невозможно выделить требуемую простую фракцию. Даже если бы это и можно было сделать, для калибровки hj kho было бы такое большое количество индивидуальных соединений, которое нельзя получить в ближайшем будущем. Поэтому химики-нефтяники вынуждены ограничиться сведениями о типе молекул углеводородов и структурных групп. Возможно, что это является наиболее ценным применением спектроскопии. Другой вопрос, с которым иногда сталкивается химия нефти, это установление структуры отдельного соединения. Для этой цели пользуются характеристическими частотами, наблюдаемыми в спектрах для определенных структур. Никогда нельзя написать структурную формулу соединения только на основании спектральных данных. Однако, сопоставляя спектральные данные с данными, полученными другими методами, часто мо кно сделать выбор между несколькими взаимно исключающимися структурами. [c.320]

    Ретроспективная оценка роли физических методов в определении структуры асфальтенов показывает, что каждый из них рано или поздно апробировался на столь сложном физическом объекте п сыграл при этом определенную роль. Однако необходимо отметить, что, несмотря на увеличение информативной способности современных физических методов анализа, нельзя назвать из их числа такой метод, который бы позволил составить достаточно полное представление о структуре асфальтенов. В то же время комплексное их использование нозволяет отражать различные стороны такой многогранной научно-практической проблемы, как раскрытие химического строения молекул асфальтенов и многообразия их физико-химических свойств. [c.205]

    Помимо указанных методов анализа полимерных кремлий-органических соединений, для полной характеристики последних и определения структуры молекул широко применяют другие физические и физико-химические методы анализа (см. гл. VI). [c.112]

    Масс-спектроскопический метод хорошо дополняет информацию, получаемую с помощью других физических методов. Так, например, УФ-спектр указывает на тип ароматической системы пли сопряженной поглощающей группы ИК-спектр позволяет обнаружить наличие многих функциональных групп спектр ЯМР дает в ряде случаев информацию об окружении этих групп. Детальная интерпретация масс-спектра часто позволяет локализировать эти функциональные группы в определенных местах молекулы и оценить характер их взаимной связи. Кроме того, по данным масс-спектра можно сделать вывод относительно размера и структуры боковых цепей прямое определение молекулярного веса дает значения с точностью до одной единицы массы. [c.231]

    Только на основе глубокого изучения физических свойств, элементного состава, химического строения, особенно определения состава и количества гетероатомов, природы их связи и положения в общей структуре молекул, направлений химических превращений можно разработать пути химико-технологической переработки этих сложных компонентов нефти. Изучение химического строения асфальтенов с использованием большого комплекса современных экс-перн.ментальных методов должно составить одно из основных направлений научного решения поставленной проблемы. [c.108]

    Место ЯМР-спектроскопии среди других физических методов исследования и ее значение в химии. ЯМР-спектроскопия заняла достойное место рядом с другими физическими методами исследования, например, инфракрасной спектроскопией. Как правило, эти методы не заменяют, а взаимно дополняют друг друга. Тем не менее следует особо подчеркнуть, что ЯМР-спектроскопия может часто служить источником такой Информации о структуре химических соединений, которая другими методами получается лишь с огромным трудом или вообще была недоступна. еперь во многих случаях химик-органик, взглянув на спектр ЯМР, может быстро решить, получил ли он то, что задумал. Раньше такой вывод удавалось сделать лишь после долгих недель или месяцев кропотливой работы. Это было и остается одной из причин небывалой популярности ЯМР-спектроскопии. В настоящее время контроль за синтезом новых соединений часто осуществляется с помощью метода ЯМР. Связь химической структуры со спектрами ЯМР отли-чаетсисключительно высокими темпами, быстро получила признание и в настоящее время занимает ведущее место среди физических методов определения строения молекул. [c.6]

    Определив по масс-спектру образующиеся фрагменты, можно в сочетании с другими физическими методами воссоздать структуру исходной молекулы. С этой целью масс-спектрометрия была использована для определения последовательности аминокислотных остатков в пептидах (М. М. Шемякин, Ю. А. Овчинников, И. С. Вульфсон), установления строения производных углеводородов (Н. К. Кочетков, О. С. Чижов). В настоящее время перспективным методом идентификации и структурного анализа смесей стала хроматомасс-спектромет-р и я, явивн1аяся результатом объединения в одном приборе газожидкостного хроматографа и масс-спектрометра. [c.511]

    Значение временного фактора для определения структуры молекул, а следовательно, и для обнаружения изомерии было осознано лишь недавно в связи с рассмотрением молекул как нежестких структур. Было показано [24], что не только наблюдаемая конфигурация молекулы, но даже и координационное число могут зависеть от того, какой физический метод применяется в исследовании. В табл. 2 приве- [c.20]

    Ясность в представления о внутренней динамике молекул была внесена лишь в первой половине XX в. в результате появления многочисленных методов физического исследования веществ. Посредством инфракрасной и Раман-спектроокопии был установлен механизм линейных и вращательных внутримолекулярных колебаний атомов и атомных групп. Электронные спектры позволили выяснить характер возбужденного состояния молекул. Нейтронографические и рентгенографические методы дали возможность делать заключения о распределении электронной плотности в молекулах. Определенную информацию о динамических аспектах молекул дали масс-спектрометрические и радиоспектроскопические методы. Все это, естественно, способствовало разъяснению бутлеровских предвидений о структуре молекул как некой энергетической, или динамической, упорядоченности, присущей системе взаимосвязанных атомов. [c.94]


Смотреть страницы где упоминается термин Физические методы определения структуры молекул: [c.220]    [c.21]    [c.18]    [c.262]    [c.22]   
Смотреть главы в:

Общая и неорганическая химия -> Физические методы определения структуры молекул

Общая и неорганическая химия -> Физические методы определения структуры молекул

Строение вещества -> Физические методы определения структуры молекул

Строение вещества Издание 2 -> Физические методы определения структуры молекул

Общая и неорганическая химия -> Физические методы определения структуры молекул




ПОИСК





Смотрите так же термины и статьи:

Метод Молекулы

Метод структур

Методы физические

Молекула, определение

Молекулы структура, определение

Применение физических методов в конформационном анализе Методы определения полной структуры молекул

Физические методы определения



© 2025 chem21.info Реклама на сайте