Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение валентности

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]


    С другой стороны при наиболее распространенных методах — перманганатометрии, йодометрии — имеются хорошо разработанные и проверенные прописи для определения многих веш,еств. При этом в первом случае индикаторы не применяются, так как сам рабочий раствор (перманганат) интенсивно окрашен во втором случае хорошо известно применение чувствительного специального индикатора — крахмала. В связи с перечисленными обстоятельствами в методах, основанных на изменении валентности, применяют несколько различных типов индикаторов. [c.362]

    Атомы могут колебаться либо вдоль линии химической связи (валентные колебания), либо за счет изменения валентных углов (деформационные колебания), как это показано на примере молекулы воды  [c.146]

    Менделеев выполнял свою диссертационную работу в Германии, в Гейдельберге, как раз во время Международного химического конгресса в Карлсруэ. Он присутствовал на конгрессе и слышал речь Канниццаро, в которой тот четко изложил свою точку зрения на проблему атомного веса. Вернувшись в Россию, Менделеев приступил к изучению списка элементов и обратил внимание на периодичность изменения валентности у элементов, расположенных в порядке возрастания атомных весов валентность водорода 1, лития I, бериллия 2, бора 3, углерода 4, магния 2, азота 3, серы 2, фтора 1, натрия 1, алюминия 3, кремния 4, фосфора 3, к1 слорода 2, хлора I и т. д. [c.99]

    Превращение пирамидальной молекулы НдР в тетраэдрический нон РН1 должно сопровождаться существенным изменением валентного угла - ИРН (от 93,7 до 109,5°), поэтому электронодонорные свойства Н3Р значительно ослаблены по сравнению с H3N. Так, фосфин в воде растворяется, но соединений при этом не образует. [c.368]

    При переходе от лития к фтору Г происходит закономерное ослабление металлических свойств и усиление неметаллических с одновременным увеличением валентности. Переход от фтора Г к следующему по значению атомной массы элементу натрию Ыа сопровождается скачкообразным изменением свойств и валентности, причем натрий во многом повторяет свойства лития, будучи типичным одновалентным металлом, хотя и более активным. Следующий за натрием магний во многом сходен с бериллием Ве (оба двухвалентны, проявляют металлические свойства, но химическая активность обоих выражена слабее, чем у пары Ы — Ыа). Алюминий А1, следующий за магнием, напоминает бор В (валентность равна 3). Как близкие родственники похожи друг на друга кремний 81 и углерод С, фосфор Р и азот Ы, сера 8 и кислород О, хлор С1 и фтор Г. При переходе к следующему за хлором в последовательности увеличения атомной массы элементу калию К опять происходит скачок в изменении валентности и химических свойств. Калий, подобно литию и натрию, открывает ряд элементов (третий по счету), представители которого показывают глубокую аналогию с элементами первых двух рядов. [c.20]


    Элемент Атомная масса Реакции Изменение валентно- сти Электро-чи.ии-ческий эквивалент, кг-Кл ю  [c.279]

    Хотя очень интересно установить, происходит ли в таких реакциях одновременный переход двух электронов, имеющийся в настоящее время кинетический материал не позволяет это сделать. (Одно время считали, что изменение валентного состояния происходит легко только в том случае, если перенос приводит к изменению валентного состояния только на одну единицу. Благодаря вероятности того, что большинство таких изменений происходит путем переноса атомов, это ограничение оказывается ненужным. В водных системах перенос атома О эквивалентен передаче двух зарядов, в то время как перенос радикала ОН или атома Н соответствует передаче единичного заряда. С этой точки зрения вода может служить очень хорошей средой для переноса заряда.) [c.509]

    Определяющую роль в трактовке механизма окисления, катализируемого металлами переменной валентности, сыграли работы Габера и Вейса [28]. Каталитическое окисление органических соединений в присутствии металлов переменной валентности включает элементарные стадии, характерные как для ионных, так и для радикальных реакций [12, с. 209]. В результате реакции между ионом металла и реагентом происходит изменение валентности иона металла и образуется свободный радикал, обусловливающий возникновение и развитие цепного процесса окисления  [c.629]

    Однако применение метода однотипных реакций в этом случае ограничивается тем, что такие реакции всегда связаны с изменением валентного состояния элементов, а аналогия в свойствах элементов может не распространяться на разные валентные состояния. Так, ионы натрия и калия, содержащиеся в их хлоридах (не будем усложнять вопроса рассмотрением величины их эффективного заряда), обладая устойчивой конфигурацией электронной оболочки, переходят в возбужденные состояния только при очень высоких температурах. А свободные атомы натрия и калия вследствие на личия в них слабо связанного электрона возбуждаются при уме ренно высоких и довольно различных температурах (см. рис. V, 4) [c.183]

    Рассмотрим такие электроды, реакции на которых не связаны с выделением из электролита или растворением в нем простых веществ (металлов, элементар[(ых газов). Обязательные для электрохимических реакций получение или отдача электродами электронов, конечно, происходят в элементах и этого типа, но эти процессы связаны с изменением валентности иоиов в растворе. [c.553]

    Степень однотипности реакций может быть различна в зависимости от степени однотипности участвующих в реакции веществ ( 15), а также от других факторов, указываемых ниже. Реакции должны различаться не более чем одним элементом, при этом существенно, чтобы число отличающихся (однотипных) веществ в каждой части уравнения было не больще одного (в крайнем случае в одной из них не превышало бы двух), а остальные компоненты были бы одинаковы в обеих реакциях. Реакции, происходящие с изменением валентного состояния элементов, которыми они различаются, могут быть менее однотипными, так как степень однотипности аналогичных соединений двух элементов может быть неодинаковой в исходных веществах и в продуктах реакции. В частности это относится и к реакциям, в которых аналогичные элементы участвуют в виде простых веществ, и может сильно уменьшать применимость метода однотипных реакций к реакциям образования данного соединения из простых веществ или из свободных атомов элементов (см. 25—28). [c.132]

    Теплота образования. Эта категория химических реакций представляет особый интерес, так как их термодинамические параметры служат в настоящее время основой для подавляющего больщинства расчетов термодинамических параметров других реакций (см. 8). Они представляют собой весьма обширную группу реакций, для которых имеются достаточно надежные данные. Реакции этой категории более однородны по исходным веществам, так как для всего множества различных химических соединений число исходных простых веществ примерно равно числу химических элементов. Вместе с тем, хотя реакции образования из простых веществ всегда связаны с изменением валентного состояния элементов, сами эти изменения мало различаются, в особенности для однотипных соединений. [c.148]

    При сравнении активности некоторых окислов металлов замечено, что она возрастает с понижением энергии связи кислорода, которая зависит от легкости изменения валентного состояния катиона металла в окисле, определяемого его электронной структурой. Отсюда вытекает возможность регулирования каталитической активности окисных катализаторов путем введения добавок. Добавка окислов, содержащих более электроотрицательный катион, уменьшает энергию связи кислорода и соответственно повышает каталитическую активность, причем последняя возрастает с увеличением порядкового номера промотирующего металла. [c.35]


    Реакции, протекающие с изменением валентного состояния компонентов, при высоких температурах могут проявлять меньшую однотипность, так как энергии перехода в возбужденные состояния соединений аналогичных элементов для разных валентных состояний неодинаковы. Так, энергии возбуждения атомов элементов подгруппы лития различаются значительно. Поэтому реакции диссоциации двухатомных молекул этих элементов на свободные атомы (или процессы ионизации атомов), являющиеся формально однотипными, будут различаться сильнее, чем обычные однотипные реакции. Конечно, на термодинамические параметры процессов при высокой, температуре может оказывать искажающее влияние не только возбуждение атомов, но и возбуждение молекул, в частности колебательных уровней в них. [c.181]

    Аналогичные реакции гомологов. Значительно лучшие результаты дает применение метода однотипных реакций для расчета параметров аналогичных реакций гомологов, когда стехиометрические коэффициенты уравнений этих реакций одинаковы и, в особенности, когда реакции протекают без изменения валентного состояния элементов. Для этих реакций большей частью применим и метод разностей, н метод отношений. [c.290]

    Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, 5). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется. [c.127]

    Определение и классификация реакций окисления. В органической химии дать определение реакций окисления не так просто. В отличие от неорганической химии, они обычно не сопровождаются изменением валентности атомов. Общим их признаком не [c.351]

    Вращение отдельных атомных группировок вокруг направлений валентных связей в молекулах даже небольшой длины приводит к появлению большого количества особого типа стереоизомеров, которые получили название поворотных изомеров (ротамеров). Происходящее под влиянием теплового движения вращение отдельных частей молекулы реализуется без существенного изменения валентных углов и межатомных расстояний вариации их значений находятся в пределах 2-3%. При достаточно большой длине макромолекула может последовательно приобретать различную форму от растянутой (рис. 2.1, [c.77]

    Окислительно-восстановительные процессы могут быть разделены на простые и сложные. К первому типу относятся реакции, протекающие только с изменением валентности ионов  [c.181]

    Названные выше факторы, влияние pH раствора, а также некоторые другие особенности химизма реакций рассматриваются дальше подробнее. Как в более сложных, так и в простых случаях основой реакций в методах окисления и восстановления является изменение валентности, обусловленное изменением количества электронов, связанных с данными атомами или группами атомов. Схематически реакцию можно выразить уравнением  [c.348]

    Окислительно-восстановительные электроды подразделяются на простые и сложные. У первых при протекании электродной реакции происходит только изменение валентности иона, у вторых, кроме того, участвуют ионы водорода (или молекулы воды), поэтому схематическая запись таких электродов различна  [c.78]

    Все колебания в молекуле можно разделить на два типа — валентные и деформационные. Колебания, которые происходят вдоль оси связи двух атомов без изменения угла между ними, называются валентными (V, у). Колебания, связанные с изменением валентных углов (при этом длины связей практически не меняются), называются деформационными (б). Валентные колебания бывают симметричными (Vi) и асимметричными ( д ), а деформационные — ножничными, веерными, крутильными и маятниковыми (рис. 34). Однако разделение на валентные и деформационные колебания условно оно возможно только для линейных молекул (например, ацетилена Н—С=С—И . [c.138]

    Все колебания в молекуле делят на два типа валентные и деформационные. Колебания, которые происходят вдоль оси связи двух атомов без изменения угла между ними, называются валентными (V, у) колебания, связанные с изменением валентных углов (при этом длины связей практически не меняются), называются деформационными (б)  [c.275]

    Изменение валентности элементов широко используется в объемном-анализе. Определение ряда важных металлов, как Ре, Сг, Мп, Си, 5п, ЗЬ, [c.348]

    Значение относится не к элементу, а к определенной системе, т. е. к определенной реакции изменения валентности. Поэтому для элементов, которые существуют более чем в двух валентных формах, имеется несколько значений потенциала. Так, например (см. рис. 85), для изменения валентности хром а от 6 до 3 (переход Сг О, в в кислой среде) характерна величина нормального потенциала =-1-1,36 в. Для изменения валентности хрома от 3 до 2 (т. е. для равновесия Сг" + + -Ре =Сг+ ) значение окислительного потенциала равно Е"= —0,41 в. Нельзя также говорить, например, об окислительном потенциале железа , так кал для реакции + нормальный потенциал Е = -р0,77 в, а для перехода железа из двухвалентного в металлическое (Ре -1-2е=Ре°) нормальный потенциал имеет совершенно другое значение "=—0,44 в наконец, возможен прямой переход железа из трехвалентного в металлическое (Ре" + -рЗе=Ре°) для которого характерна величина E "=—0,04 в. [c.351]

    Необходимо различать две стороны влияния кислотности раствора на реаки.ии, связанные с изменением валентности. В одних случаях разность потенциалов вполне достаточна для прохождения реакции в определенном направлении, но тем не менее гро-цесс идет медленно. Изменение концентрации водородных нонов может сильно влиять иа скорость процесса. Это влияние имеет сложный характер и не связано непосредственно с общим уравнением реакции. Так, например, в уравнение реакции  [c.355]

    Некоторые электронно-ионные (частные) процессы изменения валентности не зависят (или почти не зависят) от pH раствора, так как водородные ноны не входят в уравнение реакции. Таковы, напри.мер, процессы  [c.356]

    Для расчета результатов титрования закисного железа перманганатом в присутствии серной кислоты не имеет значения образование некоторых промежуточных соединений важно знать только исходные и конечные валентные состояния железа и марганца. Обстоятельства резко изменяются в присутствии некоторых посторонних веществ (например, ионов хлора), которые в данных условиях не реагируют ни с окислителем, ни с восстановителем. Неустойчивые промежуточные продукты могут в ряде случаев взаимодействовать с посторонним веществом (например, окислять ионы хлора). Таким образом, постороннее вещество, которое в данных условиях само по себе не реагировало с основными компонентами реакции в отдельности, теперь оказывается вовлеченным в процессы изменения валентности. Такие процессы называются сопряженными реакциями окисления или восстановления. [c.358]

    Вовлечение посторонних веществ в реакции окисления и восстановления представляет большой интерес для изучения химизма процессов изменения валентности, в частности — дает возможность обнаружить и изучить свойства промежуточных продуктов. Однако при количественном анализе сопряженные реакции обычно оказывают неблагоприятное влияние, и необходимо принимать меры к их устранению. Так, во многих случаях растворенный в воде кислород практически не окисляет находящихся в растворе восстановителей. Из подкисленного раствора йодистого калия кислород лишь очень медленно выделяет йод. Если же в растворе, содержащем растворенный кислород, идет реакция, например, между пятивалентным ванадием и йодистым калием  [c.359]

    Объяснение ряда своеобразных свойств промежуточных окислов заключается (схематически) в следующем. Рассмотрим свойства элемента А в трех ступенях окисления А, (низшая ступень), (средняя) и А, (высшая), причем различные ступени отличаются друг от друга на одну единицу валентности. Работа процесса изменения валентности может быть выражена величиной Еп, т. е. произведением потенциала Е (фактор интенсивности) на число электронов п (фактор емкости). В данном случае возможны следующие процессы, для которых введем соответствующие обозначения потенциалов-. [c.360]

    Если электрохимический акт ограничивает скорость всего электродного процесса, то наблюдающееся смещение потенциала под током называется часто либо перенапряокением замедленного разряда (замедленной ионизации), либо, особенно в последнее время, перенапряжением переноса заряда. Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частиц (акты разряда и ионизации) или только к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона ириводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции [c.345]

    Любая молекула состоит из двух или более атомов, связанных между собой различными электрическими силами. Атомы в свою очередь могут рассматриваться как сочета ше ядер и электронов. Хорошо известно, что молекулы не являются жесткими структурами, т. е. в, них существуют колебания атомов друг относительно друга около некоторого положения равновесия. Эти колебания могут происходить параллельно направлению валентной силы, связывающей два атома, в результате чего изменяется расстояние между ними. Такие колебания называются колебаниями валентного типа. Колебания атомов в многоатомной молекуле в направлении, перпондикуляриом к направлению валентной силы, вызывают изменения валентного угла. Такие колебания принадлежат к деформационному типу. Существуют также вибрационные частоты, возникающие в результате сложного движения, влияющего на первоначальный скелет молекулы или на часть этого скелета. Они могут включать как валентные, так и деформационные колебания. [c.315]

    Общим для алюмохромовых катализаторов является то, что в первые минуты дегидрирования они, как правило, имеют более низкую активность, чем в последующие [20, 21]. Это связано с восстановлением хрома. Отмечалось изменение валентности хромл при переходе из окислительной среды в восстановительную и наоборот и наличие избыточного кислорода в хромовых катализаторах [22—24]. [c.654]

    Второй закон Фарадея. При прохождении одногои того же количества электричества через раз личные электролиты количества различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ. [c.386]

    Качественное различие типов изомерии цо видам Преодолеваемых при изомеризаций препятствий (структурная изомеризация — через разрыв связей, геометрическая — через изменение валентных углов, конформационная — через измененре торсионных углов), положенное возглавляемой И. Уги (ФРГ) международной группой теоретиков в основу формализации логических структур химии (1976 г,), такж(> неприемлемо. Например, проходящая с низким. барьером инверсия пирамидального атома азота в аммиаке входит в сферу конформационного анализа, при этом. [c.135]

    Заметим, что наличие положительной эпергин активации здесь обусловлено изменением валентного состояния атомов, участвующих в перестройке молекул (атомов С в приведенных в таблице реакциях). [c.128]

    Окислительный потенциал для реакций изменения валентности имеет такое же значение, как произведение растворимости для процессов образования и растворения осадков или константы диссоциации кислот и оснований для кислотно-основных процессов. Реакция (1), очевидно, будет итти вправо в том случае, если Кокис, притягивает электроны сильнее, чем их притягивает Вокис,- [c.349]

    Очень часто реакции окисления и вссстановления являются значительно более сложными, чем это. южно представить на основании общего уравнения. Уравнение реакции характеризует только исходные вещества и конечные продукты. Однако в процессе изменения валентности нередко образуются различные промежуточные продукты, имеющие особые свойства. Эти промежуточные продукты часто неустойчивы, быстро переходят в конечные продукты и, таким образом, при отсутствии в растворе посторонних веществ не оказывают влияния на определение. [c.357]


Смотреть страницы где упоминается термин Изменение валентности: [c.280]    [c.160]    [c.64]    [c.33]    [c.101]    [c.68]    [c.188]    [c.189]    [c.195]    [c.348]   
Физическая химия силикатов (1962) -- [ c.31 ]




ПОИСК







© 2024 chem21.info Реклама на сайте