Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород на полупроводниках

    О — S — Se — Ро структурные изменения и ослабление ковалентности связи Э — Э соответствуют изменению физических свойств так, кислород и сера — диэлектрики, селен и теллур — полупроводники, а полоний обладает металлической проводимостью. [c.337]

    В почве постоянно происходит реакция аммиака МНз с газообразным кислородом О2. Эта реакция широко используется также в химической промышленности для получения полупроводников при производстве лекарств, взрывчатых веществ, химических волокон и др. [c.139]


    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    Окись цинка с избыточными атомами цинка является типичным электронным полупроводником (п-полупроводником). Если же в окисле металла в избытке находится металлоид, который является акцептором электронов, то в решетке окисла или сульфида появляются дырки за счет перехода электронов от ионов металла к металлоиду. Этот переход ускоряется с повышением температуры. Например, в закиси никеля присутствует избыточный кислород. Он захватывает электроны у N1++ и превращает его в N4++- , [c.146]

    В восстанавливаемых системах могут существовать только не-восстанавливающиеся окислы и сульфиды, т. е. окислы всех метал- лов (за исключением уже обсуждавшихся металлических катализаторов) и большинство сульфидов (за исключением сульфидов благородных металлов). Кроме того, нестехиометрический избыток кислорода (или серы), необходимый для создания проводимости р-типа, не может быть сохранен при условиях восстановления. Поэтому окись хрома и окись марганца становятся изоляторами или полупроводниками м-типа. В окислительных условиях полупроводники п-типа имеют тенденцию становиться стехиометрическими, но р-тип проводимости появляется при избытке кислорода и серы. [c.28]

    Из уравнения (2) следует, что повышение парциального давления кислорода для полупроводников р-типа должно сопровождаться увеличением концентрации вакансий и дырок на границе кислород — оксид. В соответствии с этим окисление меди протекает быстрее при повышенном давлении Оа [27]. [c.198]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]


    В отличие от полупроводников электропроводность металлов мало зависит от имеющихся в их структуре примесных дефектов. Однако примесные дефекты могут оказывать существенное влияние на другие свойства металлов. Так, механические характеристики металлов сильно зависят от наличия в их структуре междоузельных примесных дефектов. С учетом плотнейшей упаковки металлических кристаллов в междоузлия способны попадать лишь микрочастицы небольших размеров, такие, как атомы водорода, углерода, кислорода, азота. Кристаллы многих металлов часто поглощают большое количество указанных примесей. Например, количество водорода, поглощенного [c.89]

    Для полупроводников характерны отклонения от стехиометри-ческого состава, т. е. избыток или недостаток в веществе доли одного компонента относительно доли другого по сравнению с вычисленными теоретически на основании закона постоянства состава. Известно, например, что в оксиде СиО имеется избыток кислорода (0,002%) ио отношению к меди, а в оксиде ВаО — избыток бария по отношению к кислороду. Эти отклонения от стехиометрического состава действуют подобно примесям. Как видно из предлагаемой ниже работы, полупроводниковые свойства PbS зависят от отношения числа атомов свинца к числу атомов серы в исходной смеси. [c.299]

    Анодное травление кристаллов электронных полупроводников происходит чрезвычайно медленно и поэтому редко применяется на практике. Возможно, однако, электролитическое травление п области полупроводникового прибора. Последнее связано с выделением атомарного кислорода на подведенном к п области металлическом выводе. Выделяющийся атомарный кислород окисляет близлежащие участки поверхности прибора, которые затем растворяются в электролите. [c.203]

    При работе полупроводникового прибора даже в атмосфере весьма сухого воздуха возможны обратимые изменения его параметров. Эти изменения связаны с происходящими в окисной пленке процессами адсорбции—десорбции молекул кислорода. Указанные процессы имеют место при изменениях либо температуры, либо работы выхода электронов из кристалла полупроводника. Концентрация адсорбированных в окисной пленке молекул кислорода Со, определяется обычным выражением [c.217]

    Работа выхода электронов из полупроводника ф определяется концентрациями носителей заряда [см. формулу (29)) и может быть изменена либо за счет освещения кристалла, либо инжек-цией через р — п п — р) переход. Отсюда следует, что концентрация адсорбированных в окисной пленке молекул кислорода зависит от электрических режимов (например, от плотности протекающего через р — п переход тока), в которых работает полупроводниковый прибор. Время установления равновесия между поверхностью кристалла и окружающей атмосферой составляет при комнатной температуре от двух часов до двух суток. Поэтому после резкого изменения электрического режима, например, после включения полупроводникового прибора, происходит сравнительно медленное (2—48 час.) изменение его параметров, связанное с процессами адсорбции или десорбции кислорода. Такое явление получило название тренировки и типично для некоторых кремниевых приборов. Из сказанного выше ясно, что изменение параметров прибора, происходящее при тренировке, носит временный характер и при возвращении к исходному режиму постепенно исчезает. [c.218]

    S, селен Se, теллур Те и полоний Ро. Кислород и сера — неметаллы, причем кислород по своей электроотрицательности стоит на втором месте после фтора полоний — металл серебристобелого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим — благородные металлы селен и теллур, занимающие промежуточное положение, являются полупроводниками. На внешнем уровне атомов этих элементов содержится по шесть электронов ns np. атомах электронов Se, Те и Ро электроны внешнего уровня экранируются от ядра десятью -электронами предвнешнего уровня, что ослабляет их связь с ядром и способствует проявлению металлических черт в характере этих элементов. [c.229]

    Второй пример. Оксид никеля (II), близкий по составу к стехиометрическому, имеет светло-зеленую окраску и является хорошим изолятором. После нагревания в атмосфере кислорода он приобретает окраску от серой до черной и становится полупроводником. Это явление объясняется аналогично предыдущему случаю. Введение избыточного кислорода сопровождается его [c.36]

    Графит широко используется для изготовления тиглей. Стержни из графита применяются как электроды. Много графита идет на производство карандашей. Алмаз используется в ювелирной промышленности. Технический алмаз (с примесями) используется как абразивный материал. Углерод и кремний применяются для производства различных сортов чугуна. В металлургии углерод используется как восстановитель, а кремний из-за большого сродства к кислороду — как раскислитель. Кристаллические кремний и германий в особо чистом состоянии (не более 10 ат. % примеси) используются как полупроводники в различных устройствах [c.458]


    Это можно рассмотреть на примере дырочного полупроводника N 0 и электронного полупроводника 2пО. В N 0 дырочная проводимость обусловлена избыточным против стехиометрии содержанием кислорода. Избыток кислорода в междоузлиях является акцепторной примесью, что приводит к переходу части ионов N1 + в решетке в ионы N1 +. Дырочная проводимость возникает как результат перехода электрона с N 2+ на N1 +, что приводит к перемещению дырок. Введение в решетку N 0 однозарядных ионов или Ыа+ и замещение ими ионов № + должно увеличивать электропроводность. Один положительный заряд ионов или Ыа+ не способен скомпенсировать отрицательные заряды соседних ионов кислорода, что вызовет переход N1 + в N1 + в соседних узлах решетки. С этой точки зрения двухзарядные ионы 2п + или Mg2+ не должны влиять на электропроводность, а трехзарядные ионы Ре + или Сг + должны уменьшать электропроводность, переводя часть N1 + в N 2+. [c.167]

    При адсорбции диамагнитных молекул на диамагнитных поверхностях можно обнаружить распаривание электронов адсорбированных частиц (или атома поверхности) с образованием ион-радикалов. Таким путем было показано, что при адсорбции кислорода на полупроводниках все адсорбированные молекулы кислорода переходят-в новое парамагнитное состояние и что одна из форм адсорбции кислорода образована радикалом перекисного типа. [c.181]

    Сульфиды металлов. В силу существенно меньшей величины ОЭО серы по сравнению с кислородом (2,6 и 3,5) сульфиды металлов более ковалентны, чем оксиды. Менее ионный характер межатомной связи приводит к тому, что сульфиды металлов являются более явно выраженными полупроводниками в отличие от оксидов, большинство которых — изоляторы. Если оксиды бесцветны или слабо окрашены, сульфиды нередко отличаются интенсивной окраской. Объясняется это тем, что при переходе от кислорода к сере растет емкость электронной оболочки, а вместе с ней способность ее к деформации. Другими словами, отрицательно поляризованные атомы серы в сульфидах легче поляризуются, чем атомы кислорода в оксидах. При этом с ростом поляризующего действия катионообразователя интенсивность окраски возрастает. Так, HgS — красного, dS — оранжевого и ZnS — желтого цвета. [c.325]

    Полупроводимость возрастает или убывает, если при адсорбции образуются или соответственно уничтожаются носители зарядов. Так, водород (донор) понижает проводимость полупроводников р-типа (N 0, СГ2О3) и повышает проводимость полупроводников п-типа (2пО, 5г) [68], в то время как кислород (акцептор) производит противоположное действие [69]. [c.30]

    Если 1 поверхностное соединение является полупроводником п-типа с избытком металла, например ZnO, dO, ВеО и др., то концентрация их дефектов (междоузельных катионов) тоже не должна зависеть от давления кислорода (см. рис. 90). Это и наблюдается при 400° С, когда толщина пленки превышает 5000А. Но при низкой температуре и малой толщине пленок (меньше ЮООА) с повышением давления кисло-рода скорость окисления возрастает в связи с тем, что имеет место лога-. if. рифмический рост пленки во времени, где диффузионный механизм Вагнера неприменим. Перенос ионов цинка про-исходит под действием электрических  [c.131]

    Если поверхностное соединение металла является полупроводником р-типа с недостатком металла, например uaO, NiO, FeO, СоО и др., то при окислении таких металлов должна, по Вагнеру, наблюдаться определенная зависимость от величины давления кислорода (см. рис. 90). В идеальном случае к реакции окисления приложим закон действующих масс. В случае окисления никеля по реакции (54) [c.131]

    Si твердое, тугоплавкое вещество. Его кристаллическая решетка аналогична решетке алмаза. Так как связь Si—С слабее, чем С — С, то карборунд меисе тверд, чем алмаз. Ои является полупроводником. Карборунд интенсивно реагирует с расплавленными и1,елочаыи (в присутствии кислорода), вьпне 600 С взаимодействует с хлором, выше 1300 °С подвергается высокотемпературному гидролизу  [c.375]

    СИЛОКСАНЫ — высокомолекулярные соединения, содержащие чередующиеся атомы кремния и кислорода, кроме этого, атомы кремния связаны с органическими радикалами, водородом, галогенами и т. п. Низшие линейные алкилсилокса-ны — бесцветные прозрачные жидкости различной вязкости, нерастворимые в воде. Высокомолекулярные диметилполи-силоксаны — очень вязкие жидкости, которые могут быть вулканизированы органическими пероксидами в резиноподобные эластомеры. Циклические диалкил-силоксаны — твердые кристаллические продукты. С. применяют в качестве полупроводников для получения силоксан-каучуков, масел и др. После вулканизации силоксан-каучуков нз них изготов- [c.227]

    При установлении между окисной пленкой и объемом кристалла электронного равновесия в рассматриваемой системе образуется общий уровень электрохимического потенциала электронов, который не может проходить выше зоны проводимости и ниже валентной зоны. Поэтому энергетические уровни окисной пленки, оказывающие наибольшее влияние на величину коэффициента поверхностной рекомбинации, должны находиться вблизи уровня на расстоянии, не превышающем ширины запрещенной зоны для данного кристалла (см. рис. 53 и 58). Считая, что гидратированная окисная пленка вместе с адсорбированными в ней частицами подобна водному раствору, и обращаясь к рис. 53, мы приходим к выводу, что наиболее эффективными центрами рекомбинации в окисной пленке являются атомы или ионы элементов, располагающихся в правой части ряда напряжений металлов или металлоидов (см. стр. 192). Такими элементами являются водород, медь, серебро, золото, а также кислород и сера. Напомним, что именно для ионов этих элементов характерна высокая скорость электронного обмена при контакте металла или полупроводника с электролитом. Поэтому дe aнный [c.210]

    Одна из самых интересных областей физической химии реальных кристаллов — теория нестехиометрических соединений. Несте-хиометрические твердые соединения обнаружены еще в прошлом веке. Образование таких соединений Бертолле считал нормальным свойством твердых тел. Отсюда возникло название бертол-лиды . Нестехиометрические твердые соединения — обычно ионные кристаллы. Состав оксида титана изменяется от Т1о,вО до ТЮ ,2. Оксид железа (II) всегда содержит избыток кислорода РеО +в. Небольшая нестехиометричность характерна даже для хлорида натрия. В кристаллах Ыац-вС значение доходит до б 10 . Нестехиометрические ионные кристаллы обладают интересными электрофизическими свойствами, изучение которых, начатое в 30-е годы, завершилось созданием современной теории полупроводников. [c.277]

    Кислород и сера — основные рудообразующне элементы. Важнейшими их производными являются вода, серная кислота и сульфиды. Селен, а также селениды и теллуриды—полупроводники (используются в электротехнической промышленности). [c.435]

    Полиины являются полупроводниками. Они обладают высокой термостойкостью, а также стойкостью к действию кислорода, озояа и, радиации. [c.416]

    Ковалентные сульфиды образуют в основном 5/з-металлы, особенно с конфигурацией внешних электронов ns4p (Al, Ga, In, Tl). Большая часть этих сульфидов имеет сложное кристаллохимическое строение, образуя слоистые и каркасные структуры. Ковалентные сульфиды являются полупроводниками. По химической природе эти сульфиды амфотерны, в воде почти нерастворимы, малоустойчивы по отношению к химическим реагентам. Многие из них реагируют с влагой воздуха с выделением HaS, активно взаимодействуют с кислородом, галогенами. [c.326]


Смотреть страницы где упоминается термин Кислород на полупроводниках: [c.541]    [c.63]    [c.130]    [c.21]    [c.29]    [c.196]    [c.61]    [c.338]    [c.438]    [c.138]    [c.242]    [c.81]    [c.206]    [c.217]    [c.219]    [c.288]    [c.169]   
Смотреть главы в:

Экспериментальные методы исследования катализа -> Кислород на полупроводниках




ПОИСК





Смотрите так же термины и статьи:

Еникеев. Кинетика хемосорбции кислорода на полупроводниках

Полупроводники

Полупроводники полупроводники

Сорбция кислорода на полупроводниках



© 2025 chem21.info Реклама на сайте