Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция влияние на форму пика

    В 2 настоящей главы мы рассматривали влияние кинетики адсорбции на форму пика исходных веществ и продуктов для необратимой реакции первого порядка. Там были получены выражения для степени превращения а, времени удерживания уд и дисперсии исходного вещества и продукта реакции (см. формулы ( .72) — (У.74) (У.79) — (У.83)). Эти выражения в принципе позволяют вычислить константы скорости реакции и константы скорости адсорбции и десорбции исходных веществ и продуктов в ходе реакции, если бы каким-либо образом удалось экспериментально определить величины а, уд и сг компонентов реакционной смеси. Подчеркнем, что, поскольку эти величины должны отражать процессы, происходящие в каталитическом реакторе, они должны быть измерены по пикам, снятым непосредственно на выходе из слоя катализатора. Ввиду того что на слое катализатора в условиях реакции происходит взаимное перекрывание полос, обычно бывает трудно получить хроматограмму, пригодную для непосредственного определения а, уд и а . [c.248]


    Эффективность молекулярных сепараторов может существенно снижаться за счет частичного обратного смешения разделенных компонентов, а также в результате возможных эффектов адсорбции и разложения на рабочих поверхностях сепараторов. Влияние этих нежелательных эффектов проявляется в уширении пиков, возникновении хвостов и других искажений формы пиков, что можно легко установить, сопоставляя хроматограммы, измеренные при помощи пламенно-ионизационного детектора и методом детектирования по полному ионному току. [c.309]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]


    Во всем предшествовавшем обсуждении допускалось, что коэффициент распределения не зависит от концентрации пробы (линейная изотерма). В то же время при тех размерах проб, с которыми приходится иметь дело Б хроматографической практике, нелинейные изотермы адсорбции встречаются довольно часто и оказывают влияние как на форму пика, так и на время удерживания. На рис. 3.5 приведены три типа встречающихся изотерм адсорбции — линейная, выпуклая и вогнутая. Выпуклые изотермы являются типичными для адсорбционной хроматографии и приводят к уменьшению времени удерживания и образования хвоста у пика. Вогнутые изотермы адсорбции характерны для распределительной [c.46]

    Обратимый переменнотоковый электродный процесс на основной частоте типа к+пе Ъ характеризуется и некоторыми другими особенностями. Потенциал пика и форма волны не должны зависеть от концентрации и периода капания. Отсутствие зависимости Ер и формы волны от этих переменных само по себе не является однозначным признаком обратимости, но, как будет показано, форма волн некоторых квазиобратимых процессов и процессов, сопровождающихся явлениями адсорбции и химическими реакциями, часто существенно зависит от периода капания. Поэтому исследование влияния периода капания на форму и положение волны иногда может быть весьма полезным для подтверждения характера электродного процесса. [c.437]

    Выведены дифференциальные ур-ния в частных производных для нелинейной равновесной хроматографии. Разработанная теория относится к случаю, когда изолированный отрезок слоя адсорбента насыщается сначала одним в-вом, так что достигается однородная равновесная конц-ция его в газовой фазе. Получено аналитическое решение ур-ний для случаев небольщих отклонений от линейности и небольшой начальной конц-ции в-ва. Обсуждается влияние нелинейности изотермы адсорбции и продольной диффузии на расширение полос, высоту пиков и форму полос. В случае линейной хроматографии начальная конц-ция не влияет на получаемую кривую, при нелинейной — форма и положение пиков зависят от начальной конц-ции. [c.29]

    Модель, количественно описывающая роль воды в хроматографии на силикагеле, представлена в работе [381]. По данным работы [180], с увеличением концентрации полярных растворителей в подвижной фазе влияние воды становится все менее ощутимым (рис. 4.22). При концентрациях полярных растворителей и более влиянием воды на удерживание можно пренебречь, если работа носит прикладной, аналитический характер и не ставит целью строгое измерение физико-химических параметров. Насыщение элюента водой положительно влияет "На—хроматографическое поведение полярных соединений. Так, отмечается улучшение эффективности и формы хроматографических пиков, увеличение максимально допустимой нагрузки на колонку в области линейной изотермы адсорбции Ленгмюра [375, с. 374]. Показано, что добавка к подвщщюй фазе 0,45% воды существенно улучшает форму пиков таких трудных для хроматографии соединений, как производные дезоксирибонукле-отидов [186]. [c.131]

    Основополагающей в этом отношении следует рассматривать появившуюся в 1960 г. работу Бассета и Хэбгуда, в которой авторы, предположив линейную изотерму адсорбции, вывели уравнение, позволившее рассчитать константу скорости необратимой гетерогенной реакции первого порядка по измеренной экспериментально степени превращения. Теория реакций в импульсном микрореакторе за последние годы интенсивно развивалась как у нас, так и за границей. Были рассмотрены обратимые и необратимые реакции различных порядков как при мгновенном установлении равновесия газ — твердое тело, так и с учетом конечной скорости достижения адсорбционного равновесия в самое последнее время появились работы, в которых учтено также влияние продольной диффузии в потоке и диффузии реагирующего вещества внутрь поры твердого тела на характер протекания каталитических превращений в импульсном микрореакторе. Решение задач в случае нелинейной изотермы адсорбции требует более широкого использования современных методов вычислительной техники. Некоторые результаты, полученные в последнее время с помощью ВМ, описаны в пятой главе. Там же приведены результаты работ нашей лаборатории, в которых показана возможность измерения констант скоростей адсорбции и десорбции в ходе каталитического процесса по форме пиков реагирующего вещества и продуктов реакции. Пока в этом плане сделаны лишь первые шаги, однако в дальнейшем можно надеяться получить интересные результаты по расшифровке механизма сложных реакций, в особенности в тех случаях, когда скорости адсорбционных процессов явлцются лимитирующими. [c.6]


    Уже в первых работах по теории хроматографии [3—8] была установлена простая зависимость между формой хроматографического пика и свойствами системы адсорбент — адсорбат. При этом предполагалось мгновенное установление адсорбционного равновесия и отсутствие продольной диффузии. Получив свое известное основное уравнение хроматографии, Де Во [4] показал, что оно может быть использовано для решения как прямой , так и обратной задачи а) по известной изотерме адсорбции можно найти форму проявительного пика и б) по форме пика, снятой детектором, можно рассчитать изотерму адсорбции. По данным Кэссиди [9], измерившего изотерму адсорбции лауриновой кислоты на активированном угле, Де Во рассчитал форму пика лауриновой кислоты при элюировании ее петролейным эфиром (рис. 1П.1). Рассчитанная кривая прекрасно описала экспериментальную. Это, по-видимому, первый случай применения теории хроматографии для расчета формы пика по изотерме адсорбции. Более широкое распространение указан-, ный метод получил, однако, в газовой хроматографии, поскольку в этом случае, благодаря значительно меньшей вязкости газов, имеются более благоприятные условия для применения равновесной теории хроматографии, вследствие быстрого установления адсорбционного равновесия в каждой точке слоя колонки. Правда, в случае газов следует ожидать большего влияния продольной диффузии, на чем мы подробнее остановимся в дальнейшем. [c.109]

    Газовая хроматография — неравновесный процесс, в ходе которого концентрационный профиль пробы, выражаемый прямоугольной функцией, переходит в пик, профиль которого отвечает гауссову распределению. В основе термодинамических расчетов лежит значение Vg, измеренное в максимуме пика. Теоретические исследования показали, что влияние замедленного массо-обмена может приводить к различиям между измеренным и гипотетическим хроматографическим равновесным значением [11]. Поэтому неоднократно предлагалось применять в качестве параметра удерживания не Vg, а первый статистический момент пика, который зависит только от коэффициента распределения и коэффициента продольной диффузии пробы [12]. Измерения IJг, основанные на первом моменте и на максимуме сигнала детектора, хотя и требуют привлечения математических методов, осуществимы с той же точностью [2, 3], что и в случае измерения Уг. Форма пика должна быть по возможности симметричной, хотя это при неленгмюровской изотерме адсорбции может не иметь места даже при большом разбавлении [14]. [c.330]

    Таким образом, развитие газо-жидкостной хроматографии показало, что уравнения (IV- ) и (1У-2) справедливы далеко не во всех случаях. Мошьер и Сивере [31] отмечали, что теоретически роль твердого носителя в газо-жидкостной хроматографии сводится к поддержанию НЖФ в таком состоянии, чтобы через нее мог проходить газовый поток. В действительности твердый носитель зачастую оказывает заметное влияние на элюционные характеристики (например, форму пика, время удерживания, образование хвоста) летучих компонентов. Чистая газо-жидкостная хроматография, в которой величины удерживания и другие хроматографические характеристики соединений определяются только свойствами НЖФ, на практике часто не реализуются. Ограниченная область применения уравнений (1У-1) и (1У-2) объясняется использованием при их выводе слишком идеализированной модели сорбента, не учитывающей его полифазности (гетерогенности). Согласно этой упрощенной модели, адсорбция на поверхностях раздела (например, газ — НЖФ, НЖФ — твердый носитель) отсутствует, а сорбция происходит только в пленке НЖФ, свойства которой не отличаются от свойств чистой НЖФ в большом объеме. Поэтому для количественного объяснения закономерностей измерения величин удерживания на сорбенте, содержащем НЖФ, необходимо рассмотреть более реальную модель этого сорбента, обратив В1нимание на распределение НЖФ на поверхности твердого носителя. [c.69]

    При выборе инертного твердого носителя необходимо следить за тем, чтобы были исключены поверхностные влияния, так как возможная адсорбция компонентов оказала бы неблагоприятное влияние на форму пиков. Возможны также нарушешге линейности или ложная регистрация состава пробы, вследствие задержки элюации. При изготовлении адсорбционных колонок большое значение имеет выбор адсорбента. Необходимо учесть содержащиеся в пробе вещества, которые могут загрязнить поверхность адсорбента и, тем самым, привести к нестабильности периодов элюации. Ниже будут рассмотрены методы уменьшения дезактивации. [c.121]

    Однако особенно плодотворной для изучения кинетики адсорбции оказалась теория газоадсорбционной хроматографии, подробно разработанная рядом чехословацких исследователей, с использованием метода моментов, широко применяемого в статистике. Впервые метод моментов для анализа хроматографических процессов был предлон ен Туницким. Теория моментов, используемая для решения линейных задач газоадсорб-циопной хроматографии, позволяет по форме хроматографического пика учесть действие продольной диффузии в газовой фазе, радиальной диффузии внутри поры частицы катализатора и конечной скорости адсорбции молекулы внутренней поверхностью поры. Опубликованные к настоящему времени работы показали большие возможности газовой хроматографии в исследовании процессов переноса и кинетики адсорбции на катализаторах. Попытка использования этого метода для изучения кинетики хемосорбции до последнего времени встречала, однако, серьезные затруднения из-за нелинейности обычной изотермы хемосорбции даже в области сравнительно невысоких парциальных давлений адсорбата. Поэтому, строго говоря, кинетику хемосорбции нельзя описать системой линейных дифференциальных уравнений. Переход же в линейную область путем значительного снижения концентрации адсорбата может быть осложнен влиянием неоднородности поверхности. В связи с этим большой интерес представляет оригинальная изотопная методика определения скорости хемосорб-ции водорода, описанная в главе четвертой, в которой показана возможность обработки экспериментальных данных по кинетике хемосорбции в случае нелинейных изотерм с использованием аппарата теории моментов. Б дальнейшем, по-видимому, эту идею можно будет обобщить на другие системы путем применения к ним методов, близких методам описания вэ- [c.5]

    По методике [41] для исключения влияния адсорбции матрицы анализируемые образцы растворяют в смазочном масле. Предлагается [40] использование энергодисперсного фильтра - монохроматора из пирографита для повьппения -чувствительности анализа. Монохроматор уменьшает загрузку полупроводникового детектора, улучшает форму спектров. Авторы работы [44] предлагают рабочую методику определения содеркания ванадия в нефтях с коррекцией эффекта матрицы по пику некогерентно рассеянного излучения хромового или вольфрамового анодов рентгеновских трубок. Исследования проводили на рентгенофлуоресцентном спектрометре У1 А-30. Требуемые объемы исходных навесок составляли 10-15 мл, время анализа одной пробы не превьпиало 3 мин, поэтому можно говорить о применимости метода в качестве экспресс-анализа. [c.11]

    Кривая AB DEF (рис. 18) представляет собой кривую С—ср в чистом растворе, а кривая ABMNOREF — в присутствии поверхностно-активных веществ. Крайние ветви кривых АВ и EF сливаются, что вытекает из формы электрокапиллярных кривых. В присутствии поверхностно-активных веществ емкость на среднем участке кривой (участок NO) много меньше, чем в чистом растворе, что объясняется меньшей диэлектрической постоянной этих веществ и большим размером их молекул по сравнению с молекулами воды. Влияние этих факторов настолько существенно, чго при адсорбции различие величин емкостей анодной и катодной ветвей при этом практйчески нивелируется. Обращает на себя внимание наличие резких скачков емкости (пиков) при потенциалах начала адсорбции и десорбции. [c.61]

    Совместная адсорбция н-бутилового спирта и катионов тетраалкиламмония с я = 1, 2 и 4 изучалась Кирковым [141, 142]. В этих работах было показано, что десорбция бутилового спирта с поверхности ртути при отрицательных потенциалах тем менее выражена, чем больше размеры катиона, при этом пик на С, -кривой снижается в последовательности К > [(СНз)4Ы] > > [(С2Нд)4М] > [(С4Н9)4 Ы] . В дальнейшем исследованию кривых дифференциальной емкости в присутствии двух различных органических веществ были посвящены работы [143] и [144], в которых подчеркивается сильное влияние аттракционного взаимодействия между адсорбированными частицами на форму С, -кривых. [c.198]

    Формы проявления отрицательного влияния необратимой и квазинеобратимой адсорбции в количественном газохроматографическом анализе весьма разнообразны. Так, несомненно надо отметить существенное влияние партии ТН на получаемые результаты [234]. На рис. VI.4 [234] приведена зависимость отношения площадей хроматографических пиков ди (трифторэтил) дитиокар-бамата кобальта и н-трикозана (адсорбционно-инертный внутренний стандарт) от количества анализируемого образца для различных партий хромосорба VAW-DM S. Как следует из приведенных данных, адсорбционная активность ТН резко изменяется от партии к партии и отрицательное влияние ТН на количественные результаты для адсорбционно-активных партий ТН уменьшается с ростом размера анализируемой пробы. Полученные результаты полностью согласуются с представлением о наличии ограниченного числа адсорбционноактивных центров на поверхности ТН, которые способны прочно адсорбировать анализируемые компоненты. [c.86]

    Детальное исследование особенностей удерживания и размытия зон углеводородов, спиртов и нитрилов в режиме препаративной хроматографии в потоке азота и водяного пара было осуществлено в работе [82] па колонке длиной 2 м и диаметром 18 мм с внутренней трубкой диаметром 6 мм. Насадкой служил хроматон N с 15% апиезона L. Поскольку сорбционная емкость неподвижной жидкости, как правило, больше сорбционной емкости твердого носителя, нри больших пробах твердый носитель работает в ре-ншме насыщения (изотермы сорбции анализируемых веществ носителем обычно выпуклы). Удерживание и форма верхней части пика определяются свойствами неподвижной фазы, а твердый носитель влияет на вид фронта или тыла пика. При достаточно больших пробах это влияние может быть заметно у основания пика и, следовательно, может не учитываться при формальном расчете эффективности колонки (поскольку определение числа теоретических тарелок производится обычно па основании измерения ширины ника на половине высоты). При малых пробах полуширина пика определяется как адсорбцией твердым носителем, так и адсорбцией неподвижной жидкостью, что вызывает возрастание левой ветви на кривых зависимости эффективности колонки от величины пробы (рис. IV.11), в то время как рост правой ветви обусловлен перегрузкой колонки. [c.97]


Смотреть страницы где упоминается термин Адсорбция влияние на форму пика: [c.49]    [c.109]    [c.148]    [c.225]    [c.113]   
Газо-жидкостная хроматография (1966) -- [ c.35 , c.36 ]

Газо-жидкостная хроматография (1966) -- [ c.35 , c.36 ]




ПОИСК







© 2025 chem21.info Реклама на сайте