Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния в сплавах на основе алюминия

    Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов. [c.49]


    Опубликован ряд работ по полярографическому определению никеля в уране [783, 1099], золоте [1043], кремнии [1042], цирконии [427, 1215] и его сплавах [385, 427], а также в легких сплавах на основе алюминия [640], в магнии [219], в электролитических ваннах [579], сточных водах [1052] и других промышленных отходах. [c.135]

    Метод фотометрии пламени дает возможность быстро и точно определить марганец в сплавах на основе алюминия или магния при содержании этих элементов от 0,005 до 5%. Определение выполняют по резонансному триплету марганца 403,0 403,3  [c.324]

    Описаны методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов, шлаков, сплавов на основе алюминия, магния и меди. Приведены методики определения большого числа легирующих элементов в этих материалах. [c.29]

    Разработаны методы определения магния в золах растений [15, 214], в почвах [16], в биологических жидкостях [18, 19, 20, 152, 244] шлаках и цементах [82], в сплавах на основе алюминия [6, 36, 127, 198], в железе [149], в металлическом уране [245], в никеле и сплавах на его основе [156], в рудах [175], в железных рудах, жаропрочных соединениях, цементах, чугуне, сахарах [175], в препаратах редкоземельных элементов [ 200] в чугуне [247] методы определения кальция в растительных материалах [86], в почвах [16], в биологических жидкостях [20, 79, 157, 175, 215], в рудах, сахарах [175] методы определения стронция [11, 175, 184, 242]. [c.124]

    Определение магния в сплавах на основе алюминия [6] [c.130]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Оборонгиз, 1959 (528 стр.). В книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и шлаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.477]

    Спектральное определение бериллия в сплавах и металлах широко распространено и обеспечивает высокую точность (5—-6%), особенно при анализе легких сплавов (на основе магния и алюминия) и бронз. [c.93]

    Методика применима для определения циркония в различных сплавах на основе титана, железа, меди, ванадия, алюминия, магния и др. [c.116]

    Вначале определяют основной элемент сплава — алюминий. Для этого берут два электрода из чистого алюминия (или один угольный, один из алюминия), включают ток и просматривают спектр на стилоскопе. Заметив интенсивные полосы спектра в области 5400—4400 А, ставят индикаторную стрелку прибора на самый интенсивный кант полосы 4842 А. Затем алюминиевые электроды заменяют на угольный электрод и испытуемый сплав. Если в спектре наблюдаются интенсивные полосы А10 (почти такой же интенсивности, как в чистом алюминии), то основа сплава — алюминий. После этого в спектре сплава определяют наличие меди по линиям 5782, 5292, 5218, 5153, 5105 А магния — по линиям 5183 5172, 5167 А марганца — по линиям 4823, 4768 А никеля — по линиям 5035, 5017, 4980, 4984 А кремния — по линии 3905 А. Определение кремния следует вести в искровом режиме. [c.172]


    В литературе описаны методики определения цинка в силикатных породах [1], воде и воздухе [2], графите, молибдене, ниобии, тантале и вольфраме [3], цинковых бронзах [4], железных рудах (5], в сплавах на основе магния и алюминия [6]. Авторы указанных работ применяли в качестве источника света лампу с полым катодом. [c.97]

    Реакция протекает в щелочной среде при pH = 12 ч-13,2. Раствор реагента при этом значении pH винно-красного цвета, который в присутствии ионов бериллия переходит в сине-фиолетовый до синего в зависимости от количества присутствующего бериллия. Оптическую плотность раствора измеряют в фотометре или фотоколориметре при Лэфф = 620 нл (ммк) (оранжевые светофильтры), Окраска устойчива в течение 18 ч. При содержании от 0,001 до 6—7% Ве его определяют непосредственно на фоне основы сплава алюминия в растворе, полученном после растворения сплава в щелочи или в кислоте с последующим переведением кислого раствора в щелочной. Присутствующие часто в сплавах магний, медь, железо, марганец, титан, цирконий при этом осаждаются щелочью в виде гидроокисей и дальнейшему определению бериллия не мешают, так же как алюминий и цинк. [c.151]

    ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, БЕРИЛЛИЯ, МАГНИЯ, УРАНА И ЦИНКА В ЦИРКОНИИ И СПЛАВАХ НА ОСНОВЕ ЦИРКОНИЯ  [c.337]

    Основными металлами, применяемыми для изготовления протекторов, являются магний, алюминий и цинк. На основе этих металлов готовят определенные магниевые или алюминиевые сплавы. Физико-химические свойства этих металлов и железа приведены в табл. 8. [c.46]

    Сплавы на основе алюминия и магния в раствО рах соли неприменимы, так как подвержены сильной точечной коррозии. Хромоникелевые стали стойки при температурах, близких к температуре кипения, но имеются сведения о местной коррозии их при по-BfiiineiiHbix температурах. Никельмолибденовые и никельмолибденожелезные сплавы обладают удовлетворительной коррозионной стойкостью в этой среде, При повышении концентрации соли скорость коррозии углеродистых сталей обычно возрастает до определенного предела, затем в концентрированных растворах она может уменьшиться. [c.825]

    В последние годы значительно увеличился интерес к дианти-пирилметану, исключительно селективному реагенту при определении малых количеств титана 163, 164]. Имеется ряд методов определения титана в сталях [165, 166], металлическом алюминии, магнии и ниобии [167, 168], сплавах на основе алюминия, молибдена, меди [169] с использованием диантипирилметана. Методы основаны на образовании желтого комплексного соединения с молярным коэффициентом погашения 15000 при 385 ммк. Чувствительность реакции такого же порядка, как и с 2,7-дихлорхро-мотроповой кислотой, а в некоторых случаях выше. Определению мешают железо, влияние которого устраняют введением восстановителей, и нитрат-ионы, нитрующие реагент. Преимуществом метода является проведение реакции в кислой среде, доступность реагента, устойчивость окраски комплекса титана. [c.65]

    Предварительные пробы для определения типа сплава. 1. Крупинку сплава обрабатывают на холоду 2—3 каплями 6 и. раствора едкого натра. Обильное выделение водорода (вскипание) указывает на сплав алюминия. Если по внешним признакам (цвету, легкости) можно предположить, что данный сплав относится к легким (алюмо-магииевым) и в то же время не реагирует с раствором едкого натра, крупинку его следует обработать на холоду 2 н. раствором уксусной кислоты. Энергичное выделение водорода показывает, что основой сплава является магний. В этом случае сплав растворяют в разбавленной соляной кислоте н анализ ведут на катионы металлов, которые входят в легкие сплавы. [c.200]

    Определение марганца в количествах 0,005—2% в сплавах на основе алюминия или магния, содержащих в качестве добавок медь, цирконий, редкоземельные элементы, методом спектрофотометрии пламени может быть выполнено фотометрированием введенных в пламя смеси ацетилена с воздухом солянокислых растворов материалов. Анализы могут быть выполнены с помощью спектрофотометров пламени, собранных на основе монохроматоров ЗРМ-3, УМ-2, ИСП-51 и др., а также приспособленных для пламеунофотрметрических определений адсорбционных спектрофотометров СФ-4, СФ-5, СФД-1 и др. [c.325]

    Обычные методы фотометрии пламени как эмиссионные, так и атомно-абсорбционные, разработаны и применяются в основном для анализа растворов. Возможность применения метода фотометрии пламени к анализу твердых образцов без перевода их в раствор рассмотрена в [127]. Метод, предложенный авторами, схематически представлен на рис. 27 и заключается в эррозионном разрушении анализируемого металла искровым разрядом с последующим внесением полученного распыла в пламя горелки потоком воздуха. Предварительные исследования, проведенные авторами, показали, что оптическая плотность пламени при длине волны резонансного излучения существенно зависит от параметров искрового контура и в отличие от методов анализа растворов заметно флуктуирует во времени. Указанный недостаток может быть устранен применением интегрирующих схем, например накопительного конденсатора, или шунтированием искрового промежутка высокоомным сопротивлением порядка 10 Мом. Метод применен к определению меди (до 5%) и магния (до 3%) в сплавах на основе алюминия, а также меди и марганца в сталях в интервалах 0,1 — 1% и 0,5—1,2% соответственно. [c.88]


    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]

    Для определения никеля в сплавах на основе магния и алюминия используют главным образом фотометрические методы. Многие авторы применяют диметилдиоксим в присутствии окислителей в щелочной среде [491, 572, 1130], а-фурилдиоксим, экстрагируя его соединение с никелем и затем измеряя оптическую плотность [697, 698]. Иногда экстрагируют соединение никеля 5%-ным раствором пирролидиндитиокарбамината в хлороформе и измеряют оптическую плотность экстракта [710]. В кальции определяют никель в виде суспензии с ниоксимом [650]. Никель выделяют диметилдиоксимом, используя для комплексообразования кальция [c.148]

    При определении кальция в магниевых сплавах в количестве сотых долей процента химическими методами встречаются затруднения одно из них — необходимость количественного отделения кальция от основы и ряда компонентов сплава. Более перспективен для этой цели метод фотометрии пламени. Спектр кальция в пламени смеси ацетилена с воздухом состоит из ряда атомных линий 393,4 396,8 422,7 ммк. Последняя линия наиболее интенсивна и чаще других применяется для анализа, равно как и молекулярные полосы (СаОН) с максимумами при 554 и 622 ммк. Интенсивность линии 422,7 ммк в пламени ацетилен — воздух пропорциональна концентрации кальция в растворах в интервале О—390 мкг/мл кальция [526]. Извертво, что соли железа, меди, цинка [527], а также хрома и бария [526, 528] понижают интенсивность излучений кальция. Этот эффект [529] более резко выражен в присутствии солей алюминия, титана, а также ванадия, урана [512] и других. Это усложняет определение кальция в сплавах на основе магния, содержащих значительные количества алюминия. Влияние алюминия устраняют, осаждая его аммиаком [530], бензоатом аммония или маскируя оксихинолином [531]. Следует отметить, что последний метод оказывается непригодным для сплавов с 7—10% А1. Определение может быть выполнено при помощи спектрофотометра пламени по линии 422,7 ммк или по полосам гидроокиси кальция, а также на фотометрах Zeiss, ППФУНИИЗ, или ФПФ-58 по полосе гидроокиси кальция с максимумом 622 ммк. [c.319]

    Определения лантана в количестве 0,1—2% в сплавах и лигатурах на основе магния могут быть выполнены фотометрированием солянокислых растворов материалов, введенных в пламя смеси ацетилена с воздухом на установке, собранной на основе монохроматоров ЗРМ-3 или УМ-2. Установка снабжена механизмом для развертки спектров по максимумам молекулярных пиков лантана [743 и 794 нм ммк)] при ширине спектральной щели 0,2 мм. Записывают участок спектров 720—820 нм ммк). Возможно определение лантана с помощью фотометров пламени, снабженных интерференционными светофильтрами для определения калия. Калий в данном случае должен быть количественно отделен. Содержащиеся в магниевых сплавах алюминий и цирконий снижают интенсивность эмиссии лантана, образуя в пламени труднолетучие смешанные окислы. При введении в растворы для фотометрирования азотнокислого аммония в концентрации 150 мг1мл эмиссия лантана в присутствии циркония или алюминия практически не изменяется. Точность метода 0,05%, продолжительность анализов 30 мин. [c.323]


Смотреть страницы где упоминается термин Определение магния в сплавах на основе алюминия: [c.200]    [c.131]    [c.6]    [c.215]    [c.248]   
Смотреть главы в:

Атомно-абсорбционный анализ -> Определение магния в сплавах на основе алюминия




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Алюминий определение в магнии

Магний определение

Магний сплавы

Определение алюминия, бериллия, магния, урана и пинка в цирконии п сплавах на основе циркония

Определение основы

Сплав алюминия с магнием

Сплавы алюминия и сплавы магния



© 2025 chem21.info Реклама на сайте