Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий определение в магнии

    Реактив предложен Бергом в 1927 г. и получил очень широкое применение. Этот реактив осаждает ионы многих элементов, что создает известные трудности для разделения. Однако, создавая определенную среду (pH раствора, присутствие комплексообразователей и др.), с помощью оксихинолина можно делить большое количество катионов. Так, например, для разделения алюминия и магния сначала используют в качестве среды смесь уксусной кислоты с уксуснокислым натрием или аммонием в этих условиях осаждается только оксихинолинат алюминия. Затем в фильтрате создают аммиачную среду, причем осаждается оксихинолинат магния. [c.103]


    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]

    Метод цементации (называемый также внутренним электролизом) заключается в восстановлении компонентов (обычно малых количеств) на металлах с достаточно отрицательными потенциалами (алюминий, цинк, магний) или на амальгамах электроотрицательных металлов. При цементации происходят одновременно два процесса катодный (выделение компонента) и анодный (растворение цементирующего металла). В качестве примера можно привести выделение микроэлементов из вод на металлах-цементаторах (А1, М 2п), обладающих простыми эмиссионными спектрами, поэтому последующее атомно-эмиссионное определение микроэлементов непосредственно в концентрате легко осуществляется. [c.254]

    Определение алюминия в магнии и магниевых сплавах [c.220]

    ОСТ 4649—76. Методы агрохимических анализов почв. Определение pH, обменной кислотности, объемного (подвижного) алюминия, кальция, магния, аммония, марганца и содержание нитратов в почвах по методу ЦИНАО. [c.317]

    Как уже указывалось выше, при восстановлении урана (VI) некоторые из восстановителей, в том числе такие, как цинк и его амальгамы, алюминий и магний, восстанавливают его до смеси урана (IV) и урана (III). Уран (III) образуется также в небольших количествах при восстановлении с помощью кадмия и его амальгам, цри восстановлении в серебряном редукторе и при электролитическом восстановлении урана (VI), Так как при этом определенного постоянного соотношения между образующимися количествами урана (IV) и урана (III) достигнуть не удается, то для получения точных результатов перед титрованием уран (III) необходимо в таких случаях снова окислить до урана (IV). [c.89]


    Этот метод удобен для регулярных анализов. Он применим для определения магния в металлическом титане, титановой губке и сплавах, содержащих до 5% алюминия, молибдена и олова. С успехом можно анализировать и титановые сплавы, содержащие до 1 % железа и 0,5% хрома. Метод используется для анализа сплавов, содержащих количества железа и хрома, вдвое превышающие указанные выше допустимые пределы, но начальную навеску пробы или аликвотную часть раствора необходимо вдвое уменьшить. [c.53]

    Описано применение магнезона II для определения магния в металлическом алюминии [688], в биологических материалах [510] и в природной воде [511]. [c.128]

    Авторы работы [689] проводят полярографическое определение магния с солохром фиолетовым КЗ при несколько меньших значениях pH (—9) в этих условиях для реагента и комплекса магния величины у, составляют —0,58 и—1,15 в соответственно. В одном растворе можно определять алюминий и магний при pH 4,7 и 9 соответственно. Влияние Сг, N1 и РЗЭ устраняют добавлением цианидов (1 мл 0, М раствора). Чувствительность определения [c.165]

    При определении магния в сплавах алюминия чаще всего используется искровое возбуждение. Применяют спектрограф средней дисперсии. Образцы отливают в кокиль для получения прутков диаметром 7 мм . Нижний электрод — анализируемый сплав, заточенный на плоскость или полусферу. Верхний электрод — пруток из чистого алюминия диаметром 7 мм или анализируемый сплав, заточенный на полусферу. При искровом возбуждении спектра (генератор ИГ-2, сложная схема) условия съемки следующие I — 2 а, С — 0,003—0,005 мкф, Ь = 0,01 мгн, постоянное число цугов при разрядах, искровой промежуток 2 мм, ширина щели 0,025—0,030 мм, предварительное обыскривание в течение 60—90 сек., экспозиция в зависимости от чувствительности пластинки 30—60 сек. Можно использовать следующие анали- [c.172]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Бронзы безоловянные. Метод спектрального анализа по стандартным металлическим образцам с фотоэлектрической регистрацией спектра Лигатура медно-бериллиевая. Спектральный метод определения магния, железа, алюминия, кремния и свинца [c.821]

    Алюминий. Методы определения магния [c.572]

    Баббиты кальциевые. Метод атомно-абсорбционного определения магния, меди и алюминия [c.582]

    Литий. Метод определения магния, марганца, железа, алюминия, кремния, бария [c.584]

    Осадки, получающиеся при действии на катионы или анионы органических осадителей, отличаются большим молекулярным весом. Вследствие этого точность анализа повышается. Например, определение магния, алюминия и других катионов проводится с большой точностью осаждением их в виде оксихинолятов, обладающих большим молекулярным весом. [c.356]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]

    Очень легко проводить определение таких металлов, как алюминий и магний, имеющих эндотермические теплоты реакции с ЕОТА, и высокую скорость при комнатной температуре. Такие же металлы, как хром, для которых скорость образования комплексного соединения с ЕОТА мала, не могут быть определены прямо по этой реакции, даже несмотря на то, что теплоты образования их комплексов свидетельствуют о возможности протекания реакции с выделением относительно большого количества тепла. [c.83]

    Магний можно определять в присутствии относительно большого количества кальция (Са Mg до 200 1) с титановым желтым. Поскольку железо и алюминий мешают определению магния, их удаляют экстракцией 1%-ным раствором 8-оксихинолина в хлороформе. [c.76]

    Шкала Е используется только для калибровки прибора в соответствии с требованиями стандарта. Обычно шкала Е используется для определения твердости чугуна, стали, алюминия и магния. [c.268]


    Сплавы на основе алюминия и магния в раствО рах соли неприменимы, так как подвержены сильной точечной коррозии. Хромоникелевые стали стойки при температурах, близких к температуре кипения, но имеются сведения о местной коррозии их при по-BfiiineiiHbix температурах. Никельмолибденовые и никельмолибденожелезные сплавы обладают удовлетворительной коррозионной стойкостью в этой среде, При повышении концентрации соли скорость коррозии углеродистых сталей обычно возрастает до определенного предела, затем в концентрированных растворах она может уменьшиться. [c.825]

    В качественном ато.мно-эмиссионмом спектральном анализе в отличие от химического ие требуется сложных операций по групповому разделению элементов. С помощью этого метода можно легко различить два металла с близкими химическими свойствами. Например, неодим и иразеодим при их совместном присутствии идентифицирую1ся с не меньшей простотой, чем алюминий и магний. Результаты анализа в любой момент могут быть проверены путем повторного изучения спектрограммы. Этот метод особенно ценен тогда, когда неизвестен общий химический состав анализируемого вещсства или необходимо обнаружить искомый элемент в пробе. Для выполнения анализа небольшая навеска или капля раствора, нанесенная на торец углеграфитового электрода, возбуждаются электрической дугой, а спектр снимается на фотопластинку или изучается визуально. Присутствие или отсутствие элемента в пробе безошибочно может быть установлено по двум-трем характерным спектральным линиям. Этим методом можно быстро определить один или несколько металлов. Спектральные линии благо-ролных газов, галогенов, серы и некоторых редких тяжелых металлов малочувствительны или для их определения требуются специальные приемы и соответствующая аппаратура, что делает выполнение анализа более сложным, чем химическими методами. [c.665]

    С помощью солохромового фиолетового определяют алюминий в стали [739, 1121], ферротитане 778], в сплавах Ре — V, Ре — 2г и Ре — Т [251а], в РЬ — 5п-сплавах [566], в почвах [1], в рудах [257], цинковых покрытиях [257] и др. Предложены методы одновременного определения алюминия и цинка в магниевых сплавах [744], алюминия и магния в горных породах [708]. Предложено полярографическое определение алюминия по окислению его комплекса с солохромовым фиолетовым на вращающемся графитовом пиролитическом электроде [726]. Реагент и алюминий на фоне 0,2 М ацетатного буферного раствора с pH 4,7 дают анодные волны с ./, = + 0,53 б и + 0,87 е, соответственно. По волне комплекса можно определять 25 мкг А1/лл. При pH 4,7 определению алюминия не мешают 20-кратные количества Ag, Аз, Ве, В , Ое, С( , Са, Сг, Си, Hg, и, Mg, Мо, N1, РЬ, Рг, 5Ь, 5п, ТЬ, Т1, и, А /, Тп, 2г, РОГ и растворенного кислорода. Мешают Ре (III), V (V), Т1 (IV), Со, Мп и Р". [c.144]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Алюминий также образует сульфосалицилатный комплекс и мешает определению бериллия. Влияние алюминия (и магния) 1у10жн0 устранить добавлением комплексона III. Присутствие последнего не влияет на поглощение бериллиевого комплекса при 317—320 ммк и pH 9,2—10,8. Железо можно замаскировать солянокислым гидроксиламипом [415] или предварительно отделить. [c.85]

    Определение кобальта в магнии [830]. Сначала кобальт выделяют соосажденнем с гидроокисью алюминия. Навеску магния растворяют в соляной кислоте и прибавляют раствор хлорида алюминия (5 мг А1). Раствор нейтрализуют раствором едкого натра по метиловому красному, затем прибавляют избыток щелочи до появления осадка, и устанавливают pH 8,4—8,6 по тимоловому синему (внешний индикатор). Осадок отфильтровывают и растворяют в горячей соляной кислоте (1 1). Раствор выпаривают досуха, остаток растворяют в растворе лимонной кислоты и определяют кобальт нитрозо-К-солью обычным способом и измеряют оптическую плотность при 532 ммк. Метод позволяет определить 6 мкг кобальта в присутствии 10 мкг алюминия, 2 мг железа, 2 мг меди, 1 мг свинца и 0,1 мг никеля с ошибкой 0,1 мкг кобальта. [c.204]

    К 32 мл воды и 30 мл 95%-ного этанола добавляют 10 мл 2,2, 2",2" -этилендинитрилотетраэтанола, 22 мл триэтаноламина ш 6 мл пентена. При определении магния используют 3 мл маскирующего реагента. После добавления маскирующего реагента раствору дают стоять в течение 5 мин. После этого вводят реагент и оптическую плотность раствора измеряют через 3— 15 мин. (не позже тем терез 15 мин.) после перемешивания. После этого эффективность маскирования алюминия триэтаноламином ухудшается. [c.136]

    Для определения магпия атомно-абсорбционным методом используется его резонансная линия с А. = 285,2 нм. Анализируемый раствор распыляют в пламя, в которое излучается свет лампы с полым катодом, изготовленным из металлического магния или из магния и алюминия. Атомы магния в газах пламени поглощают часть светового потока резонансной линии. Уменьшение интенсивности излучения в известных пределах пропорционально концентрации Mg в анализируемом растворе. Для выполнения анализа используют спеЬ иально предназначенные для этого спектрофотометры, а также установки, собранные из [c.186]

    При использовании пламени смеси ацетилена и закиси азота определению магния мешают лишь щелочные металлы и стронций [987, 1068]. Добавление 0,5% Sr la и 0,4% комплексона III устраняет влияние щелочных металлов. Алюминий пе мешает до соотношения к магнию 25 1 [987]. Фосфат-ион не мешает, если только не присутствует в высоких концентрациях [987, 1086, 1196]. Определению ОЛ MKzMg мл не мешают до 200 mkzVO мл [1067]. Серная и уксусная кислоты мешают первая в концентрации 5% уменьшает поглощение магния на 20%, вторая в той же концентрации усиливает поглощение на 20%. [c.188]

    Из посторонних ионов при определении магния атомно-аб-сорбционным методом наиболее сильно уменьшают поглощение магния А1 , SiOr и РО - Алюминий уменьшает поглощение потому, что образует соединения с магнием типа смешанных окислов. Влияние алюминия можно уменьшить использованием высокотемпературного пламени и полностью устранить введением соли стронция [480, 519, 538, 592, 647, 648, 680, 745, 823, 894, 987, 1273], соли стронция и лимонной кислоты [749], соли кальция [393, 894, 895, 1196], 8-оксихинолина [1094, 1095, 1198, 1254], смеси 8-оксихинолина и соли кальция [1093], соли лантана [272, 983, 1000]. Подавление влияния алюминия солями Sr, Са и 8-оксихинолином объясняется образованием с алюминием более прочных сое- [c.190]

    Со смесями неорганических перхлоратов, хотя каждый из них отдельно может быть вполне стабилен, следует обращаться с ис ключительной осторожностью. Например, установлено , что смесь перхлоратов, применявшаяся в шахтах (состав неизвестен) так бурно детонировала прн стандартном определении ч встви тельности к трению на маятниковом приборе ( фибровый башмак ) что опыт был прекращен При аналогичном испытании под дав лением смесь оказалась лишь несколько менее чувствительной чем фульминат ртути, и в 10 раз более чувствительной по отно щению к статической искре меньшей энергии, чем может быть выделена человеческим телом. Кабин сообщил также о трех случаях взрывов на заводах взрывы были вызваны составом для фотографии, содержавшим перхлорат калия с порошками алюминия и магния. В результате испытаний смеси, содержащей перхлорат калия с никелем, титаном и инфузорной землей, произошли такие сильные взрывы (применялся фибровый башмак ), что все пробы пришлось снизить с стандартных 7 г до 2 г. Даже при уменьшении веса, 4 из шести смесей не выдержали испытання фибровым башмаком . [c.210]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    В 1955 г. Чактержи [12] применил для анализа руды термометрическое титрование из обычной бюретки с использованием термометра Бекмана в качестве температурного датчика. Руду ( 2,5—3 г) вначале растворяли в соляной кислоте. После разбавления раствора к нему прибавляли избыток хлорида аммония и гидроокись аммония до полного осаждения гидроокисей железа (III), алюминия и титана (IV). Затем с помощью уксусной кислоты pH раствора делали равным 4 и объем раствора доводили до 250 мл. Затем аликвотную часть раствора 50 мл титровали 0,5-м. раствором оксалата аммония. После полного осаждения оксалата кальция, что на энтальпограмме отмечается четким изгибом, к анализируемому раствору прибавляли концентрированный аммиак и затем титровали его раствором двузамещенного фосфата натрия и аммония для определения магния по реакции осаждения нерастворимого фосфата магния. [c.75]

    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]


Смотреть страницы где упоминается термин Алюминий определение в магнии: [c.63]    [c.200]    [c.177]    [c.40]    [c.140]    [c.191]    [c.211]    [c.570]    [c.330]    [c.6]   
Химико-технические методы исследования (0) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Бериллий фотометрическое определение в алюминии, магнии и меди с сернистым

Варианты анализа осадка окислов алюминия, железа Определение кальция и магния (СаО

Колориметрическое определение магния в алюминии

Колориметрическое определение меди, никеля, железа, алюминия, кальция, магния и кремния

Магний металлический, определение алюминия

Магний определение

Определение Ы0-5 алюминия в сернокислом и углекислом кадмии и окиси магния. Е. А. Божевольнов, Серебрякова, И. М. Плотникова

Определение алюминия в магнии и магниевых сплавах

Определение алюминия химическими магнии н его сплавах

Определение алюминия, бериллия, магния, урана и пинка в цирконии п сплавах на основе циркония

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение железа, кальция, магния и алюминия в суперфосфорной кислоте

Определение кальция, магния, железа и алюминия в магнезитах по Тейсу

Определение кремневой Определение реакционной кислоты, алюминия, же- способности заполнителей леза, кальция и магния 102 со щелочами

Определение кремния, железа (общего), титана, алюминия, кальция, магния

Определение кремния, железа (общего), титана, алюминия, кальция, магния ускоренным методом

Определение кремния, железа, алюминия, никеля, кальция, магния без удаления борной кислоты

Определение магния алюминии и его сплавах

Определение магния в присутствии алюминия

Определение магния в сплавах на основе алюминия

Определение марганца в присутствии цинка, алюминия и магния

Определение меди в металлических кобальте, никеле, кадмии, марганце, алюминии и магнии

Определение цинка в присутствии алюминия, магния и кальция

Определение цинка в присутствии алюминия, никеля, магния и марганца

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Раздельное определение аэрозолей окислов алюминия, магния, марганца, железа, цинка и меди при их совместном присутствии

Редкоземельные элементы определение в алюминии, железе, кадмии, кальции, магнии, меди, почве

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, бора, железа, магния, марганца, меди, никеля, олова, свинца, сурьмы, титана и хрома в карбиде кремния

Спектральное определение алюминия, кадмия, цинка, сурьмы, железа, свинца, фосфора, марганца, магния и меди в карбиде кремния

Спектральное определение алюминия, кальция, кобальта, хрома, меди, железа, магния, марганца, никеля, титана и ванадия в двуокиси кремния и кварце

Спектральное определение железа, кремния, меди, магния, титана, свинца, марганца, олова и серебра в алюминии

Спектральное определение магния, меди и кремния в алюминии

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, железа, магния, марганца, меди, никеля, свинца, сурьмы и хрома в мышьяке

Химико-спектральное определение алюминия, висмута, индия, кадмия, магния, марганца, меди, никеля, свинца и цинка в таллии

Химико-спектральное определение алюминия, висмута, кадмия, кобальта, магния, меди, никеля, свинца, серебра и цинка в металлическом индии

Химико-спектральное определение алюминия, висмута, кадмия, магния, марганца, меди, никеля, свинца и цинка в индии

Химико-спектральное определение алюминия, висмута, магния, марганца, меди, никеля, свинца, серебра и хрома в арсениде галлия

Химико-спектральное определение алюминия, висмута, цинка, магния, марганца, никеля, свинца, серебра, сурьмы, галлия, олова, хрома и меди в двуокиси кремния с применением полого катода

Химико-спектральное определение алюминия, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра и цинка в металлическом талии и хлориде таллия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца и цинка в фосфиде индия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца, цинка и серебра в висмуте

Химико-спектральное определение алюминия, титана, кремния, свинца, меди, магния и марганца в арсениде галлия

Химико-спектральное определение железа, меди, кремния, магния, марганца и титана в алюминии

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза



© 2025 chem21.info Реклама на сайте